No Arabic abstract
We compute the shear viscosity of QCD with matter, including almost all next-to-leading order corrections -- that is, corrections suppressed by one power of $g$ relative to leading order. We argue that the still missing terms are small. The next-to-leading order corrections are large and bring $eta/s$ down by more than a factor of 3 at physically relevant couplings. The perturbative expansion is problematic even at $T simeq 100$ GeV. The largest next-to-leading order correction to $eta/s$ arises from modifications to the qhat parameter, which determines the rate of transverse momentum diffusion. We also explore quark number diffusion, and shear viscosity in pure-glue QCD and in QED.
We introduce an event-by-event perturbative-QCD + saturation + hydro (EKRT) framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.
We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-$p_T$ observables from this pQCD + saturation + hydro (EKRT) framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio $eta/s$ of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5.023 TeV Pb+Pb collisions.
We introduce an event-by-event pQCD + saturation + hydro (EKRT) framework for high-energy heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order (NLO) perturbative QCD (pQCD) using saturation to control soft particle production, and describe the space-time evolution of the QCD matter with viscous hydrodynamics, event by event (EbyE). We compare the computed centrality dependence of hadronic multiplicities, p_T spectra and flow coefficients v_n against LHC and RHIC data. We compare also the computed EbyE probability distributions of relative fluctuations of v_n, as well as correlations of 2 and 3 event-plane angles, with LHC data. Our systematic multi-energy and -observable analysis not only tests the initial state calculation and applicability of hydrodynamics, but also makes it possible to constrain the temperature dependence of the shear viscosity-to-entropy ratio, eta/s(T), of QCD matter in its different phases. Remarkably, we can describe all these different flow observables and correlations consistently with eta/s(T) that is independent of the collision energy.
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2<->2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
The fireball concept of Rolf Hagedorn, developed in the 1960s, is an alternative description of hadronic matter. Using a recently derived mass spectrum, we use the transport model GiBUU to calculate the shear viscosity of a gas of such Hagedorn states, applying the Green-Kubo method to Monte-Carlo calculations. Since the entropy density is rising ad infinitum near $T_H$, this leads to a very low shear viscosity to entropy density ratio near $T_H$. Further, by comparing our results with analytic expressions, we find a nice extrapolation behavior, indicating that a gas of Hagedorn states comes close or even below the boundary $1/4pi$ from AdS-CFT.