Do you want to publish a course? Click here

Moving mesh finite difference solution of non-equilibrium radiation diffusion equations

180   0   0.0 ( 0 )
 Added by Weizhang Huang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A moving mesh finite difference method based on the moving mesh partial differential equation is proposed for the numerical solution of the 2T model for multi-material, non-equilibrium radiation diffusion equations. The model involves nonlinear diffusion coefficients and its solutions stay positive for all time when they are positive initially. Nonlinear diffusion and preservation of solution positivity pose challenges in the numerical solution of the model. A coefficient-freezing predictor-corrector method is used for nonlinear diffusion while a cutoff strategy with a positive threshold is used to keep the solutions positive. Furthermore, a two-level moving mesh strategy and a sparse matrix solver are used to improve the efficiency of the computation. Numerical results for a selection of examples of multi-material non-equilibrium radiation diffusion show that the method is capable of capturing the profiles and local structures of Marshak waves with adequate mesh concentration. The obtained numerical solutions are in good agreement with those in the existing literature. Comparison studies are also made between uniform and adaptive moving meshes and between one-level and two-level moving meshes.



rate research

Read More

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate extension of [J.M. Duan and H.Z. Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, J. Comput. Phys., 426(2021), 109949]. The key point is the derivation of the higher-order accurate entropy conservative (EC) and ES finite difference schemes in the curvilinear coordinates by carefully dealing with the discretization of the temporal and spatial metrics and the Jacobian of the coordinate transformation and constructing the high-order EC and ES fluxes with the discrete metrics. The spatial derivatives in the source terms of the symmetrizable RMHD equations and the geometric conservation laws are discretized by using the linear combinations of the corresponding second-order case to obtain high-order accuracy. Based on the proposed high-order accurate EC schemes and the high-order accurate dissipation terms built on the WENO reconstruction, the high-order accurate ES schemes are obtained for the RHD and RMHD equations in the curvilinear coordinates. The mesh iteration redistribution or adaptive moving mesh strategy is built on the minimization of the mesh adaption functional. Several numerical tests are conducted to validate the shock-capturing ability and high efficiency of our high-order accurate ES adaptive moving mesh methods on the parallel computer system with the MPI communication. The numerical results show that the high-order accurate ES adaptive moving mesh schemes outperform both their counterparts on the uniform mesh and the second-order ES adaptive moving mesh schemes.
The radiation magnetohydrodynamics (RMHD) system couples the ideal magnetohydrodynamics equations with a gray radiation transfer equation. The main challenge is that the radiation travels at the speed of light while the magnetohydrodynamics changes with the time scale of the fluid. The time scales of these two processes can vary dramatically. In order to use mesh sizes and time steps that are independent of the speed of light, asymptotic preserving (AP) schemes in both space and time are desired. In this paper, we develop an AP scheme in both space and time for the RMHD system. Two different scalings are considered. One results in an equilibrium diffusion limit system, while the other results in a non-equilibrium system. The main idea is to decompose the radiative intensity into three parts, each part is treated differently with suitable combinations of explicit and implicit discretizations guaranteeing the favorable stability conditionand computational efficiency. The performance of the AP method is presented, for both optically thin and thick regions, as well as for the radiative shock problem.
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of multi-group radiation diffusion equations, whose coefficient matrices can be rearranged into the $(G+2)times(G+2)$ block form, where $G$ is the number of energy groups. The preconditioning techniques are based on the monolithic classical algebraic multigrid method, physical-variable based coarsening two-level algorithm and two types of block Schur complement preconditioners. The classical algebraic multigrid is applied to solve the subsystems that arise in the last three block preconditioners. The coupling strength and diagonal dominance are further explored to improve performance. We use representative one-group and twenty-group linear systems from capsule implosion simulations to test the robustness, efficiency, strong and weak parallel scaling properties of the proposed methods. Numerical results demonstrate that block preconditioners lead to mesh- and problem-independent convergence, and scale well both algorithmically and in parallel.
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spectral analysis focuses on the case of matrix sequences related to FE approximations on uniform structured meshes, by referring to spectral tools derived from Toeplitz theory. In such a setting, if the problem is coercive, and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequence shows a strong clustering at unity, i.e., a superlinear preconditioning sequence is obtained. Under the same assumptions, the optimality of the PHSS method is proved and some numerical experiments confirm the theoretical results. Tests on unstructured meshes are also presented, showing the some convergence behavior.
This research was mainly conducted to explore the possibility of formulating an efficient algorithm to find roots of nonlinear equations without using the derivative of the function. The Weerakoon-Fernando method had been taken as the base in this project to find a new method without the derivative since Weerakoon-Fernando method gives 3rd order convergence. After several unsuccessful attempts we were able to formulate the Finite Difference Weerakoon-Fernando Method (FDWFM) presented here. We noticed that the FDWFM approaches the root faster than any other existing method in the absence of the derivatives as an example, the popular nonlinear equation solver such as secant method (order of convergence is 1.618) in the absence of the derivative. And the FDWFM had three function evaluations and secant method had two function evaluations. By implementing FDWFM on nonlinear equations with complex roots and also on systems of nonlinear equations, we received very encouraging results. When applying the FDWFM to systems of nonlinear equations, we resolved the involvement of the Jacobian problem by following the procedure in the Broydens method. The computational order of convergence of the FDWFM was close to 2.5 for all these cases. This will undoubtedly provide scientists the efficient numerical algorithm, that doesnt need the derivative of the function to solve nonlinear equations, that they were searching for over centuries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا