Do you want to publish a course? Click here

Period multiplication in a parametrically driven superconducting resonator

86   0   0.0 ( 0 )
 Added by Ida-Maria Svensson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental observation of period multiplication in parametrically driven tunable superconducting resonators. We modulate the magnetic flux through a superconducting quantum interference device, attached to a quarter-wavelength resonator, with frequencies $nomega$ close to multiples, $n=2,,3,,4,,5$, of the resonator fundamental mode and observe intense output radiation at $omega$. The output field manifests $n$-fold degeneracy with respect to the phase, the $n$ states are phase shifted by $2pi/n$ with respect to each other. Our demonstration verifies the theoretical prediction by Guo et al. in PRL 111, 205303 (2013), and paves the way for engineering complex macroscopic quantum cat states with microwave photons.



rate research

Read More

We have observed period-tripling subharmonic oscillations, in a superconducting coplanar waveguide resonator operated in the quantum regime, $k_B T ll hbaromega$. The resonator is terminated by a tunable inductance that provides a Kerr-type nonlinearity. We detected the output field quadratures at frequencies near the fundamental mode, $omega/2pi sim 5,$GHz, when the resonator was driven by a current at $3omega$ with an amplitude exceeding an instability threshold. The output radiation was red-detuned from the fundamental mode. We observed three stable radiative states with equal amplitudes and phase-shifted by $120^circ$. The downconversion from $3omega$ to $omega$ is strongly enhanced by resonant excitation of the second mode of the resonator, and the cross-Kerr effect. Our experimental results are in quantitative agreement with a model for the driven dynamics of two coupled modes.
We study the backaction of a driven nonlinear resonator on a multi-level superconducting qubit. Using unitary transformations on the multi-level Jaynes-Cummings Hamiltonian and quantum optics master equation, we derive an analytical model that goes beyond linear response theory. Within the limits of validity of the model, we obtain quantitative agreement with experimental and numerical data, both in the bifurcation and in the parametric amplification regimes of the nonlinear resonator. We show in particular that the measurement-induced dephasing rate of the qubit can be rather small at high drive power. This is in contrast to measurement with a linear resonator where this rate increases with the drive power. Finally, we show that, for typical parameters of circuit quantum electrodynamics, correctly describing measurement-induced dephasing requires a model going beyond linear response theory, such as the one presented here.
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
We study superconducting stripline resonator (SSR) made of Niobium, which is integrated with a superconducting interference device (SQUID). The large nonlinear inductance of the SQUID gives rise to strong Kerr nonlinearity in the response of the SSR, which in turn results in strong coupling between different modes of the SSR. We experimentally demonstrate that such intermode coupling gives rise to dephasing of microwave photons. The dephasing rate depends periodically on the external magnetic flux applied to the SQUID, where the largest rate is obtained at half integer values (in units of the flux quantum). To account for our result we compare our findings with theory and find good agreement. Supplementary info at arXiv:0901.3133 .
We consider a dissipative evolution of parametrically-driven qubits-cavity system under the periodical modulation of coupling energy between two subsystems, which leads to the amplification of counterrotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists to stabilize entanglement and quantum correlations between qubits even in the steady state and to compensate finite qubit relaxation. On the contrary, energy dissipation in qubit subsystem results in the enhanced photon production from vacuum for strong modulation, but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in context of quantum information processing and might be of importance for dissipative quantum state engineering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا