Do you want to publish a course? Click here

$2$-groups behaving as automorphism groups of regular $3$-polytopes

61   0   0.0 ( 0 )
 Added by Yan-Quan Feng
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we classify regular polytopes with automorphism groups of order $2^n$ and Schlafli types ${4, 2^{n-3}}, {4, 2^{n-4}}$ and ${4, 2^{n-5}}$ for $n geq 10$, therefore giving a partial answer to a problem proposed by Schulte and Weiss in [Problems on polytopes, their groups, and realizations, Periodica Math. Hungarica 53(2006) 231-255].



rate research

Read More

By a map we mean a $2$-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. Automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no truly subquadratic algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.
The superextension $lambda(X)$ of a set $X$ consists of all maximal linked families on $X$. Any associative binary operation $*: Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper we study isomorphisms of superextensions of groups and prove that two groups are isomorphic if and only if their superextensions are isomorphic. Also we describe the automorphism groups of superextensions of all groups of cardinality $leq 5$.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For example, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
A graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let $Gamma$ be a connected graph of odd order and twice prime valency, and let $G$ be a subgroup of the automorphism group of $Ga$. In the case where $G$ acts transitively on the edges and quasiprimitively on the vertices of $Ga$, we prove that either $G$ is almost simple or $G$ is a primitive group of affine type. If further $G$ is an almost simple primitive group then, with two exceptions, the socle of $G$ acts transitively on the edges of $Gamma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا