Do you want to publish a course? Click here

On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars

84   0   0.0 ( 0 )
 Added by Jinyi Shangguan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interstellar medium is crucial to understanding the physics of active galaxies and the coevolution between supermassive black holes and their host galaxies. However, direct gas measurements are limited by sensitivity and other uncertainties. Dust provides an efficient indirect probe of the total gas. We apply this technique to a large sample of quasars, whose total gas content would be prohibitively expensive to measure. We present a comprehensive study of the full (1 to 500 micron) infrared spectral energy distributions of 87 redshift <0.5 quasars selected from the Palomar-Green sample, using photometric measurements from 2MASS, WISE, and Herschel, combined with Spitzer mid-infrared (5 to 40 micron) spectra. With a newly developed Bayesian Markov Chain Monte Carlo fitting method, we decompose various overlapping contributions to the integrated spectral energy distribution, including starlight, warm dust from the torus, and cooler dust on galaxy scales. This procedure yields a robust dust mass, which we use to infer the gas mass, using a gas-to-dust ratio constrained by the host galaxy stellar mass. Most (90%) quasar hosts have gas fractions similar to those of massive, star-forming galaxies, although a minority (10%) seem genuinely gas-deficient, resembling present-day massive early-type galaxies. This result indicates that quasar mode feedback does not occur or is ineffective in the host galaxies of low-redshift quasars. We also find that quasars can boost the interstellar radiation field and heat dust on galactic scales. This cautions against the common practice of using the far-infrared luminosity to estimate the host galaxy star formation rate.

rate research

Read More

We present new ALMA observations aimed at mapping molecular gas reservoirs through the CO(3-2) transition in three quasars at $zsimeq2.4$, LBQS 0109+0213, 2QZ J002830.4-281706, and [HB89] 0329-385. Previous [OIII]5007 observations of these quasars showed evidence for ionised outflows quenching star formation in their host galaxies. Systemic CO(3-2) emission has been detected only in one quasar, LBQS 0109+0213, where the CO(3-2) emission is spatially anti-correlated with the ionised outflow, suggesting that most of the molecular gas may have been dispersed or heated in the region swept by the outflow. In all three sources, including the one detected in CO, our constraints on the molecular gas mass indicate a significantly reduced reservoir compared to main-sequence galaxies at the same redshift, supporting a negative feedback scenario. In the quasar 2QZ J002830.4-281706, we tentatively detect an emission line blob blue-shifted by $vsim-2000$ km/s with respect to the galaxy systemic velocity and spatially offset by 0.2 arcsec (1.7 kpc) with respect to the ALMA continuum peak. Interestingly, such emission feature is coincident in both velocity and space with the ionised outflow as seen in [OIII]5007. This tentative detection must be confirmed with deeper observations but, if real, it could represent the molecular counterpart of the ionised gas outflow driven by the AGN. Finally, in all ALMA maps we detect the presence of serendipitous line emitters within a projected distance $sim 160$ kpc from the quasars. By identifying these features with the CO(3-2) transition, the serendipitous line emitters would be located within |$Delta v$|$<$500 km/s from the quasars, hence suggesting an overdensity of galaxies in two out of three quasars.
133 - D. Kakkad , V. Mainieri , M. Brusa 2017
Similarly to the cosmic star formation history, the black hole accretion rate density of the Universe peaked at 1<z<3. This cosmic epoch is hence best suited for investigating the effects of radiative feedback from AGN. Observational efforts are underway to quantify the impact of AGN feedback, if any, on their host galaxies. Here we present a study of the molecular gas content of AGN hosts at z~1.5 using CO[2-1] line emission observed with ALMA for a sample of 10 AGNs. We compare this with a sample of galaxies without an AGN matched in redshift, stellar mass, and star formation rate. We detect CO in 3 AGNs with $mathrm{L_{CO} sim 6.3-25.1times 10^{9} L_{odot}}$ which translates to a molecular hydrogen gas mass of $mathrm{2.5-10times 10^{10} M_{odot}}$ assuming conventional conversion factor of $mathrm{alpha_{CO}}sim3.6$. Our results indicate a >99% probability of lower depletion time scales and lower molecular gas fractions in AGN hosts with respect to the non-AGN comparison sample. We discuss the implications of these observations on the impact that AGN feedback may have on star formation efficiency of z>1 galaxies.
88 - Q. DAmato , R. Gilli , C. Vignali 2020
Obscured AGN represent a significant fraction of the entire AGN population, especially at high redshift (~70% at z=3--5). They are often characterized by the presence of large gas and dust reservoirs that are thought to sustain and possibly obscure vigorous star formation processes that make these objects shine at far-IR and sub-mm wavelengths. We exploit ALMA Cycle 4 observations of the continuum (~2.1mm) and high-J CO emission of a sample of six X-ray selected SMGs hosting an obscured AGN at z_spec>2.5 in the 7 Ms CDF-S. We measured the masses and sizes of the dust and molecular gas and we derived the gas density and column density on the basis of a uniform sphere geometry. Finally, we compared the measured column densities with those derived from the Chandra X-ray spectra. We detected both the continuum and line emission for three sources for which we measured both the flux density and size. For the undetected sources, we derived an upper limit on the flux density. We found that the detected galaxies are rich in gas and dust (molecular gas mass in the range <0.5 - 2.7 x 10^10 M_sun for {alpha}_CO=0.8 and up to ~2 x 10^11~M_sun for {alpha}_CO=6.5, and dust mass <0.9 - 4.9 x 10^8 M_sun) and compact (gas major axis 2.1-3.0 kpc, dust major axis 1.4-2.7 kpc). The column densities associated with the ISM are on the order of 10^(23-24) cm-2, which is comparable with those derived from the X-ray spectra. For the detected sources we also derived dynamical masses in the range 0.8 - 3.7 x 10^10 M_sun. We conclude that the ISM of high redshift galaxies can substantially contribute to nuclear obscuration up to the Compton-thick (>10^24 cm-2) regime. In addition, we found that all the detected sources show a velocity gradient reminding one rotating system, even though two of them show peculiar features in their morphology that can be associated with a chaotic, possibly merging, structure.
We present a multi wavelength analysis of 28 of the most luminous low-redshift narrow-line, ultra-hard X-ray selected active galactic nuclei (AGN) drawn from the 70 month Swift/BAT all-sky survey, with bolometric luminosities of log(L_bol/erg/s) > 45.25. The broad goal of our study is to determine whether these objects have any distinctive properties, potentially setting them aside from lower-luminosity obscured AGN in the local Universe. Our analysis relies on the first data release of the BAT AGN Spectroscopic Survey (BASS/DR1) and on dedicated observations with the VLT, Palomar, and Keck observatories. We find that the vast majority of our sources agree with commonly used AGN selection criteria which are based on emission line ratios and on mid-infrared colours. Our AGN are predominantly hosted in massive galaxies (9.8 < log(M_*/M_sun) < 11.7); based on visual inspection of archival optical images, they appear to be mostly ellipticals. Otherwise, they do not have distinctive properties. Their radio luminosities, determined from publicly available survey data, show a large spread of almost 4 orders of magnitude - much broader than what is found for lower X-ray luminosity obscured AGN in BASS. Moreover, our sample shows no preferred combination of black hole masses (M_BH) and/or Eddington ratio (lambda_Edd), covering 7.5 < log(M_BH/M_sun) < 10.3 and 0.01 < lambda_Edd < 1. Based on the distribution of our sources in the lambda_Edd-N_H plane, we conclude that our sample is consistent with a scenario where the amount of obscuring material along the line of sight is determined by radiation pressure exerted by the AGN on the dusty circumnuclear gas.
A variety of large-scale diffuse radio structures have been identified in many clusters with the advent of new state-of-the-art facilities in radio astronomy. Among these diffuse radio structures, radio mini-halos are found in the central regions of cool core clusters. Their origin is still unknown and they are challenging to discover; less than thirty have been published to date. Based on new VLA observations, we confirmed the mini-halo in the massive strong cool core cluster PKS 0745$-$191 ($z=0.1028$) and discovered one in the massive cool core cluster MACS J1447.4+0827 ($z=0.3755$). Furthermore, using a detailed analysis of all known mini-halos, we explore the relation between mini-halos and AGN feedback processes from the central galaxy. We find evidence of strong, previously unknown correlations between mini-halo radio power and X-ray cavity power, and between mini-halo and the central galaxy radio power related to the relativistic jets when spectrally decomposing the AGN radio emission into a component for past outbursts and one for on-going accretion. Overall, our study indicates that mini-halos are directly connected to the central AGN in clusters, following previous suppositions. We hypothesize that AGN feedback may be one of the dominant mechanisms giving rise to mini-halos by injecting energy into the intra-cluster medium and reaccelerating an old population of particles, while sloshing motion may drive the overall shape of mini-halos inside cold fronts. AGN feedback may therefore not only play a vital role in offsetting cooling in cool core clusters, but may also play a fundamental role in re-energizing non-thermal particles in clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا