No Arabic abstract
It was recently reported that segregation of Zr to grain boundaries (GB) in nanocrystalline Cu can lead to the formation of disordered intergranular films [1,2]. In this study we employ atomistic computer simulations to study how the formation of these films affects the dislocation nucleation from the GBs. We found that full disorder of the grain boundary structure leads to the suppression of dislocation emission and significant increase of the yield stress. Depending on the solute concentration and heat-treatment, however, a partial disorder may also occur and this aids dislocation nucleation rather than suppressing it, resulting in elimination of the strengthening effect.
Most research on nanocrystalline alloys has been focused on planned doping of metals with other metallic elements, but nonmetallic impurities are also prevalent in the real world. In this work, we report on the combined effects of metallic dopants and nonmetallic impurities on grain boundary energy and strength using first-principles calculations, with a $Sigma$5 (310) grain boundary in Cu chosen as a model system. We find a clear correlation between the grain boundary energy and the change in excess free volume of doped grain boundaries. A combination of a larger substitutional dopant and an interstitial impurity can fill the excess free volume more efficiently and further reduce the grain boundary energy. We also find that the strengthening effects of dopants and impurities are dominated by the electronic interactions between the host Cu atoms and the two types of dopant elements. For example, the significant competing effects of metal dopants such as Zr, Nb, and Mo with impurities on the grain boundary strength are uncovered from the density of states of the d electrons. As a whole, this work deepens the fields understanding of the interaction between metallic dopants and nonmetallic impurities on grain boundary properties, providing a guide for improving the thermal stability of materials while avoiding embrittling effects.
A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. Journal of the Mechanics and Physics of Solids 56 (2), 640-662, is performed. The governing equations and flow laws are recast in variational form. The associated incremental problem is formulated in minimization form and provides the basis for the subsequent finite element formulation. Various choices of the kinematic measure used to characterize the ability of the grain boundary to impede the flow of dislocations are compared. An alternative measure is also suggested. A series of three-dimensional numerical examples serve to elucidate the theory.
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to predict the amount and the free energy of Mg GB segregation, and the impact of segregation on GB diffusion of both alloy components. At low temperatures, Mg atoms segregated to a tilt GB form clusters with highly anisotropic shapes. Mg diffuses in Al GBs slower than Al itself, and both components diffuse slowly in comparison with Al GB self-diffusion. Thus, Mg segregation significantly reduces the rate of mass transport along GBs in Al-Mg alloys. The reduced atomic mobility can be responsible for the improved stability of the microstructure at elevated temperatures.
Impurities are often driven to segregate to grain boundaries, which can significantly alter a materials thermal stability and mechanical behavior. To provide a comprehensive picture of this issue, the influence of a wide variety of common nonmetal impurities (H, B, C, N, O, Si, P and S) incorporated during service or materials processing are studied using first-principles simulations, with a focus on identifying changes to the energetics and mechanical strength of a Cu $Sigma$5 (310) grain boundary. Changes to the grain boundary energy are found to be closely correlated with the covalent radii of the impurities and the volumetric deformations of polyhedra at the interface. The strengthening energies of each impurity are evaluated as a function of covalent radius and electronegativity, followed by first-principles-based tensile tests on selected impurities. The strengthening of a B-doped grain boundary comes from an enhancement of the charge density among the adjacent Cu atoms, which improves the connection between the two grains. Alternatively, the detrimental effect of O results from the reduction of charge density between the Cu atoms. This work deepens the understanding of the possible beneficial and harmful effects of impurities on grain boundaries, providing a guide for materials processing studies.
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic computer simulations offer a means of gaining insights into the segregation-diffusion relationship by computing the GB diffusion coefficients of the alloy components as a function of their segregated amounts. In such simulations, thermodynamically equilibrium GB segregation is prepared by a semi-grand canonical Monte Carlo method, followed by calculation of the diffusion coefficients of all alloy components by molecular dynamics. As a demonstration, the proposed methodology is applied to a GB is the Cu-Ag system. The GB diffusivities obtained exhibit non-trivial composition dependencies that can be explained by site blocking, site competition, and the onset of GB disordering due to the premelting effect.