No Arabic abstract
The dynamic structure factor of superfluid $^4$He has been investigated at very low temperatures by inelastic neutron scattering. The measurements combine different incoming energies resulting in an unprecedentedly large dynamic range with excellent energy resolution, covering wave vectors $Q$ up to 5 AA$^{-1}$ and energies $omega$ up to 15 meV. A detailed description of the dynamics of superfluid $^4$He is obtained from saturated vapor pressure up to solidification. The single-excitation spectrum is substantially modified at high pressures, as the maxon energy exceeds the roton-roton decay threshold. A highly structured multi-excitation spectrum is observed at low energies, where clear thresholds and branches have been identified. Strong phonon emission branches are observed when the phonon or roton group velocities exceed the sound velocity. The spectrum is found to display strong multi-excitations whenever the single-excitations face disintegration following Pitaevskiis type a or b criteria. At intermediate energies, an interesting pattern in the dynamic structure factor is observed in the vicinity of the recoil energy. All these features, which evolve significantly with pressure, are in very good agreement with the Dynamic Many-body calculations, even at the highest densities, where the correlations are strongest.
We study the coupled dynamics of normal and superfluid components of the superfluid $^4$He in the channel considering the counterflow turbulence with laminar normal component. In particular, we calculated profiles of the normal velocity, the mutual friction, the vortex line density and other flow properties and compared them to the case when the dynamic of the normal component is frozen. We have found that the coupling between the normal and superfluid components leads to flattening of the normal velocity profile, increasingly more pronounced with temperature, as the mutual friction, and therefore coupling, becomes stronger. The commonly measured flow properties also change when the coupling between two components is taken into account.
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will generated to drive (partly depolarized) $^3$He down a long pipe. In the regime of $^3$He concentrations $tilde < 10^{-9}$ and temperatures $sim 0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^4$He first viscosity. On the other hand, the phonon wind drives the $^3$He out of local equilibrium via phonon-$^3$He scattering. For temperatures below $0.5$ K, both the phonon and $^3$He mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity and the $^3$He diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^3$He atoms is determined by the time dependent $^3$He diffusion equation, which describes the competition between advection by the phonon wind and $^3$He diffusion. As a consequence of the thermal diffusivity being small compared with the $^3$He diffusivity, the scale height of the final $^3$He distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^3$He distributions in terms of a complete set of normal modes.
We report on a combined theoretical and numerical study of counterflow turbulence in superfluid $^{4}$He in a wide range of parameters. The energy spectra of the velocity fluctuations of both the normal-fluid and superfluid components are strongly anisotropic. The angular dependence of the correlation between velocity fluctuations of the two components plays the key role. A selective energy dissipation intensifies as scales decrease, with the streamwise velocity fluctuations becoming dominant. Most of the flow energy is concentrated in a wavevector plane which is orthogonal to the direction of the counterflow. The phenomenon becomes more prominent at higher temperatures as the coupling between the components depends on the temperature and the direction with respect to the counterflow velocity.
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for thermal counterflow has been long studied theoretically and experimentally. In recent years, experiments of coflow are performed to observe different features from thermal counterflow. By supposing that $bm{v}_s$ is uniform and $bm{v}_n$ takes the Hagen-Poiseiulle profile, our simulation finds that quantized vortices are distributed inhomogeneously. Vortices like to accumulate on the surface of a cylinder with $bm{v}_s simeq bm{v}_n$. Consequently, the vortex configuration becomes degenerate from three-dimensional to two-dimensional.
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by the numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiment, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade-dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is a part of the theme issue Scaling the turbulence edifice.