No Arabic abstract
Asynchronous stochastic approximations (SAs) are an important class of model-free algorithms, tools and techniques that are popular in multi-agent and distributed control scenarios. To counter Bellmans curse of dimensionality, such algorithms are coupled with function approximations. Although the learning/ control problem becomes more tractable, function approximations affect stability and convergence. In this paper, we present verifiable sufficient conditions for stability and convergence of asynchronous SAs with biased approximation errors. The theory developed herein is used to analyze Policy Gradient methods and noisy Value Iteration schemes. Specifically, we analyze the asynchronous approximate counterparts of the policy gradient (A2PG) and value iteration (A2VI) schemes. It is shown that the stability of these algorithms is unaffected by biased approximation errors, provided they are asymptotically bounded. With respect to convergence (of A2VI and A2PG), a relationship between the limiting set and the approximation errors is established. Finally, experimental results are presented that support the theory.
We study distributed stochastic gradient (D-SG) method and its accelerated variant (D-ASG) for solving decentralized strongly convex stochastic optimization problems where the objective function is distributed over several computational units, lying on a fixed but arbitrary connected communication graph, subject to local communication constraints where noisy estimates of the gradients are available. We develop a framework which allows to choose the stepsize and the momentum parameters of these algorithms in a way to optimize performance by systematically trading off the bias, variance, robustness to gradient noise and dependence to network effects. When gradients do not contain noise, we also prove that distributed accelerated methods can emph{achieve acceleration}, requiring $mathcal{O}(kappa log(1/varepsilon))$ gradient evaluations and $mathcal{O}(kappa log(1/varepsilon))$ communications to converge to the same fixed point with the non-accelerated variant where $kappa$ is the condition number and $varepsilon$ is the target accuracy. To our knowledge, this is the first acceleration result where the iteration complexity scales with the square root of the condition number in the context of emph{primal} distributed inexact first-order methods. For quadratic functions, we also provide finer performance bounds that are tight with respect to bias and variance terms. Finally, we study a multistage version of D-ASG with parameters carefully varied over stages to ensure exact $mathcal{O}(-k/sqrt{kappa})$ linear decay in the bias term as well as optimal $mathcal{O}(sigma^2/k)$ in the variance term. We illustrate through numerical experiments that our approach results in practical algorithms that are robust to gradient noise and that can outperform existing methods.
Conditional Stochastic Optimization (CSO) covers a variety of applications ranging from meta-learning and causal inference to invariant learning. However, constructing unbiased gradient estimates in CSO is challenging due to the composition structure. As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives, under smooth and non-smooth conditions. We also provide matching lower bounds of BSGD for convex CSO objectives. Extensive numerical experiments are conducted to illustrate the performance of BSGD on robust logistic regression, model-agnostic meta-learning (MAML), and instrumental variable regression (IV).
This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an $O(mu)-$neighborhood of the true penalized optimizer.
We consider a general asynchronous Stochastic Approximation (SA) scheme featuring a weighted infinity-norm contractive operator, and prove a bound on its finite-time convergence rate on a single trajectory. Additionally, we specialize the result to asynchronous $Q$-learning. The resulting bound matches the sharpest available bound for synchronous $Q$-learning, and improves over previous known bounds for asynchronous $Q$-learning.
Mini-batch optimization has proven to be a powerful paradigm for large-scale learning. However, the state of the art parallel mini-batch algorithms assume synchronous operation or cyclic update orders. When worker nodes are heterogeneous (due to different computational capabilities or different communication delays), synchronous and cyclic operations are inefficient since they will leave workers idle waiting for the slower nodes to complete their computations. In this paper, we propose an asynchronous mini-batch algorithm for regularized stochastic optimization problems with smooth loss functions that eliminates idle waiting and allows workers to run at their maximal update rates. We show that by suitably choosing the step-size values, the algorithm achieves a rate of the order $O(1/sqrt{T})$ for general convex regularization functions, and the rate $O(1/T)$ for strongly convex regularization functions, where $T$ is the number of iterations. In both cases, the impact of asynchrony on the convergence rate of our algorithm is asymptotically negligible, and a near-linear speedup in the number of workers can be expected. Theoretical results are confirmed in real implementations on a distributed computing infrastructure.