No Arabic abstract
On-chip nanophotonic cavities will advance quantum information science and measurement because they enable efficient interaction between photons and long-lived solid-state spins, such as those associated with rare-earth ions in crystals. The enhanced photon-ion interaction creates new opportunities for all-optical control using the ac Stark shift. Toward this end, we characterize the ac Stark interaction between off-resonant optical fields and Nd$^{3+}$-ion dopants in a photonic crystal resonator fabricated from yttrium orthovanadate (YVO$_4$). Using photon echo techniques, at a detuning of 160 MHz we measure a maximum ac Stark shift of 2$pitimes$12.3 MHz per intra-cavity photon, which is large compared to both the homogeneous linewidth ($Gamma_h =$100 kHz) and characteristic width of isolated spectral features created through optical pumping ($Gamma_f approx$3 MHz). The photon-ion interaction strength in the device is sufficiently large to control the frequency and phase of the ions for quantum information processing applications. In particular, we discuss and assess the use of the cavity enhanced ac Stark shift to realize all-optical quantum memory and detection protocols. Our results establish the ac Stark shift as a powerful added control in rare-earth ion quantum technologies.
We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks.
We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.
We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all light rare earths. This demonstrate the robustness to environmental fluctuations of entanglement between internal degrees of freedom of a single ion.
We demonstrate the effectiveness of a guided-wave Bose-Einstein condensate interferometer for practical measurements. Taking advantage of the large arm separations obtainable in our interferometer, the energy levels of the 87Rb atoms in one arm of the interferometer are shifted by a calibrated laser beam. The resulting phase shifts are used to determine the ac polarizability at a range of frequencies near and at the atomic resonance. The measured values are in good agreement with theoretical expectations. However, we observe a broadening of the transition near the resonance, an indication of collective light scattering effects. This nonlinearity may prove useful for the production and control of squeezed quantum states.
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins magnetically coupled to a superconducting resonator. We report on a cavity QED experiment with magnetically anisotropic Er3+:Y2SiO5 crystals and demonstrate strong coupling of rare-earth spins to a lumped element resonator. In addition, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without aid of a cavity.