Do you want to publish a course? Click here

Witnessing spin-orbit thermal entanglement in rare-earth ions

170   0   0.0 ( 0 )
 Added by Diogo Soares-Pinto
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all light rare earths. This demonstrate the robustness to environmental fluctuations of entanglement between internal degrees of freedom of a single ion.



rate research

Read More

192 - Sylvain Bertaina 2009
Contrary to the well known spin qubits, rare-earth qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground-state which nutates (for several $mu$s) and the Rabi frequency $Omega_R$ is anisotropic. Here, we present a study of the variations of $Omega_R(vec{H}_{0})$ with the magnitude and direction of the static magnetic field $vec{H_{0}}$ for the odd $^{167}$Er isotope in a single crystal CaWO$_4$:Er$^{3+}$. The hyperfine interactions split the $Omega_R(vec{H}_{0})$ curve into eight different curves which are fitted numerically and described analytically. These spin-orbit qubits should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks.
We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.
We describe a method for creating small quantum processors in a crystal stoichiometric in an optically active rare earth ion. The crystal is doped with another rare earth, creating an ensemble of identical clusters of surrounding ions, whose optical and hyperfine frequencies are uniquely determined by their spatial position in the cluster. Ensembles of ions in each unique position around the dopant serve as qubits, with strong local interactions between ions in different qubits. These ensemble qubits can each be used as a quantum memory for light, and we show how the interactions between qubits can be used to perform linear operations on the stored photonic state. We also describe how these ensemble qubits can be used to enact, and study, error correction.
258 - Jie Ma , Jianshu Li , Yong Hao Gao 2020
Spin-orbit coupling is an important ingredient in many spin liquid candidate materials, especially among the rare-earth magnets and Kitaev materials. We explore the rare-earth chalcogenides NaYbS$_2$ where the Yb$^{3+}$ ions form a perfect triangular lattice. Unlike its isostructural counterpart YbMgGaO$_4$ and the kagom{e} lattice herbertsmithite, this material does not have any site disorders both in magnetic and non-magnetic sites. We carried out the thermodynamic and inelastic neutron scattering measurements. The magnetic dynamics could be observed with a broad gapless excitation band up to 1.0 meV at 50 mK and 0 T, no static long-range magnetic ordering is detected down to 50 mK. We discuss the possibility of Dirac spin liquid for NaYbS$_2$. We identify the experimental signatures of field-induced transitions from the disordered spin liquid to an ordered antiferromagnet with an excitation gap at finite magnetic fields and discuss this result with our Monte Carlo calculation of the proposed spin model. Our findings could inspire further interests in the spin-orbit-coupled spin liquids and the magnetic ordering transition from them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا