Do you want to publish a course? Click here

Plasma diagnostics of coronal dimming events

128   0   0.0 ( 0 )
 Added by Astrid Veronig
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coronal mass ejections (CMEs) are often associated with coronal dimmings, i.e. transient dark regions that are most distinctly observed in Extreme Ultra-violet (EUV) wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure (DEM) diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50-70%. Five of the events also reveal an associated drop in temperature of 5-25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10-45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20-30 min after the flare start, and does not recover for at least 10 hrs later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1-2 hrs. The pre-event temperatures are higher in the core dimming (1.7-2.6 MK) than in the secondary dimming regions (1.6-2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 AA and 193 AA filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.

rate research

Read More

We study the coronal dimming caused by the fast halo CME (deprojected speed v =1250 km s $^{-1})$ associated with the C3.7 two-ribbon flare on 2012 September 27, using Hinode/EIS spectroscopy and SDO/AIA Differential Emission Measure (DEM) analysis. The event reveals bipolar core dimmings encompassed by hook-shaped flare ribbons located at the ends of the flare-related polarity inversion line, and marking the footpoints of the erupting filament. In coronal emission lines of $log T , [{rm K}] = 5.8-6.3$, distinct double component spectra indicative of the superposition of a stationary and a fast up-flowing plasma component with velocities up to 130 km s$^{-1}$ are observed at regions, which were mapped by the scanning EIS slit close in time of their impulsive dimming onset. The outflowing plasma component is found to be of the same order and even dominant over the stationary one, with electron densities in the upflowing component of $2times 10^{9}$cm$^{-3}$ at $log T , [{rm K}] = 6.2$. The density evolution in core dimming regions derived from SDO/AIA DEM analysis reveals impulsive reductions by $40 - 50%$ within $lesssim$10 min, and remains at these reduced levels for hours. The mass loss rate derived from the EIS spectroscopy in the dimming regions is of the same order than the mass increase rate observed in the associated white light CME ($1 times 10^{12} {rm ; g ; s}^{-1}$), indicative that the CME mass increase in the coronagraphic field-of-view results from plasma flows from below and not from material piled-up ahead of the outward moving and expanding CME front.
We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifetime of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant component centered around 0.9 MK and a secondary smaller component at 1.5 - 2.0 MK. We find that deconvolving the data with the instrument point spread function (PSF) to account for long-range scattered light reduces the secondary hot component. Using the 2012 Venus transit and a 2013 lunar eclipse to test the efficiency of this deconvolution, significant amounts of residual stray light are found for the occulted areas. Accounting for this stray light in the error budget of the different AIA filters further reduces the secondary hot emission, yielding CH DEM distributions that are close to isothermal with the main contribution centered around 0.9 MK. Based on these DEMs, we analyze the evolution of the emission measure (EM), density, and averaged temperature during the CHs lifetime. We find that once the CH is clearly observed in EUV images, the bulk of the CH plasma reveals a quite constant state, i.e. temperature and density reveal no major changes, whereas the total CH area and the photospheric magnetic fine structure inside the CH show a distinct evolutionary pattern. These findings suggest that CH plasma properties are mostly set at the CH formation or/and that all CHs have similar plasma properties.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
129 - J. X. Cheng , J. Qiu 2016
Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of its eruption. In this study, we analyze the event of flare, CME, and coronal dimming on December 26, 2011. We use the data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories to obtain the height and velocity of the associated CMEs observed at the limb. We also measure magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution well tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis, we infer the process of the CME expansion, and estimate properties of the CME.
Boyajians star is an apparently normal main sequence F-type star with a very unusual light curve. The dipping activity of the star, discovered during the Kepler mission, presents deep, asymmetric, and aperiodic events. Here we present high resolution spectroscopic follow-up during some dimming events recorded post-Kepler observations, from ground-based telescopes. We analise data from the HERMES, HARPS-N and FIES spectrographs to characterise the stellar atmosphere and to put some constraints on the hypotheses that have appeared in the literature concerning the occulting elements. The stars magnetism, if existing, is not extreme. The spots on the surface, if present, would occupy 0.02% of the area, at most. The chromosphere, irrespective of the epoch of observation, is hotter than the values expected from radiative equilibrium, meaning that the star has some degree of activity. We find no clear evidence of the interstellar medium nor exocoments being responsible for the dimmings of the light curve. However, we detect at 1-2 sigma level, a decrease of the radial velocity of the star during the first dip recorded after the emph{emph{Kepler}} observations. We claim the presence of an optically thick object with likely inclined and high impact parameter orbits that produces the observed Rossiter-McLaughlin effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا