No Arabic abstract
In 1982 E.K. Sklyanin defined a family of graded algebras $A(E,tau)$, depending on an elliptic curve $E$ and a point $tau in E$ that is not 4-torsion. The present paper is concerned with the structure of $A$ when $tau$ is a point of finite order, $n$ say. It is proved that every simple $A$-module has dimension $le n$ and that almost all have dimension precisely $n$. There are enough finite dimensional simple modules to separate elements of $A$; that is, if $0 e a in A$, then there exists a simple module $S$ such that $a.S e 0.$ Consequently $A$ satisfies a polynomial identity of degree $2n$ (and none of lower degree). Combined with results of Levasseur and Stafford it follows that $A$ is a finite module over its center. Therefore one may associate to $A$ a coherent sheaf, ${mathcal A}$ say, of finite ${mathcal O}_S$ algebras where $S$ is the projective 3-fold determined by the center of $A$. We determine where ${mathcal A}$ is Azumaya, and prove that the division algebra ${rm Fract}({mathcal A})$ has rational center. Thus, for each $E$ and each $tau in E$ of order $n e 0,2,4$ one obtains a division algebra of degree $s$ over the rational function field of ${mathbb P}^3$, where $s=n$ if $n$ is odd, and $s={{1} over {2}} n$ if $n$ is even. The main technical tool in the paper is the notion of a fat point introduced by M. Artin. A key preliminary result is the classification of the fat points: these are parametrized by a rational 3-fold.
The 4-dimensional Sklyanin algebras are a well-studied 2-parameter family of non-commutative graded algebras, often denoted A(E,tau), that depend on a quartic elliptic curve E in P^3 and a translation automorphism tau of E. They are graded algebras generated by four degree-one elements subject to six quadratic relations and in many important ways they behave like the polynomial ring on four indeterminates apart from the minor difference that they are not commutative. They are elliptic analogues of the enveloping algebra of sl(2,C) and the quantized enveloping algebras U_q(gl_2). Recently, Cho, Hong, and Lau, conjectured that a certain 2-parameter family of algebras arising in their work on homological mirror symmetry consists of 4-dimensional Sklyanin algebras. This paper shows their conjecture is false in the generality they make it. On the positive side, we show their algebras exhibit features that are similar to, and differ from, analogous features of the 4-dimensional Sklyanin algebras in interesting ways. We show that most of the Cho-Hong-Lau algebras determine, and are determined by the graph of a bijection between two 20-point subsets of the projective space P^3. The paper also examines a 3-parameter family of 4-generator 6-relator algebras admitting presentations analogous to those of the 4-dimensional Sklyanin algebras. This class includes the 4-dimensional Sklyanin algebras and most of the Cho-Hong-Lau algebras.
We show that a Jordan-Holder theorem holds for appropriately defined composition series of finite dimensional Hopf algebras. This answers an open question of N. Andruskiewitsch. In the course of our proof we establish analogues of the Noether isomorphism theorems of group theory for arbitrary Hopf algebras under certain faithful (co)flatness assumptions. As an application, we prove an analogue of Zassenhaus butterfly lemma for finite dimensional Hopf algebras. We then use these results to show that a Jordan-Holder theorem holds as well for lower and upper composition series, even though the factors of such series may be not simple as Hopf algebras.
The deformed current Lie algebra was introduced by the author to study the representation theory of cyclotomic q-Schur algebras at q=1. In this paper, we classify finite dimensional simple modules of deformed current Lie algebras.
One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[partial] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work. The present paper is the second in our series on representation theory of simple Lie pseudoalgebras. In the first paper we showed that any finite irreducible module over a simple Lie pseudoalgebra of type W or S is either an irreducible tensor module or the kernel of the differential in a member of the pseudo de Rham complex. In the present paper we establish a similar result for Lie pseudoalgebras of type K, with the pseudo de Rham complex replaced by a certain reduction called the contact pseudo de Rham complex. This reduction in the context of contact geometry was discovered by Rumin.
We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional.