Do you want to publish a course? Click here

Engineering Dzyaloshinskii-Moriya interaction in B20 thin film chiral magnets

114   0   0.0 ( 0 )
 Added by Gregory Fuchs
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chiral magnetic Mn$_x$Fe$_{1-x}$Ge compounds have an antisymmetric exchange interaction that is tunable with the manganese stoichiometric fraction, $x$. Although millimeter-scale, polycrystalline bulk samples of this family of compounds have been produced, thin-fi

rate research

Read More

The current driven motion of skyrmions in MnSi and FeGe thinned single crystals could be initiated at current densities of the order of $10^6$ A/m, five orders of magnitude smaller than for magnetic domain walls. The technologically crucial step of replicating these results in thin films has not been successful to date, but the reasons are not clear. Elucidating them requires analyzing system characteristics at scales of few nm where the key Dzyaloshinskii Moriya (DM) interactions vary, and doing so in near application conditions, i.e. oxidation protected systems at room temperature. In this works magnetic force microscopy (MFM) studies of magnetron sputtered Ir/Co/Pt multilayers we show skyrmions that are smaller than previously observed, are not circularly symmetric, and are pinned to 50 nm wide areas of 75 percent higher than average DM interaction. This finding matches our measurement of Co layer thickness inhomogeneity of the order of $pm$1.2 atomic monolayers per 0.6 nm layer, and indicates that layer flatness must be controlled with greater precision to preclude skyrmion pinning.
Propagation character of spin wave was investigated for chiral magnets FeGe and Co-Zn-Mn alloys, which can host magnetic skyrmions near room temperature. On the basis of the frequency shift between counter-propagating spin waves, the magnitude and sign of Dzyaloshinskii-Moriya (DM) interaction were directly evaluated. The obtained magnetic parameters quantitatively account for the size and helicity of skyrmions as well as their materials variation, proving that the DM interaction plays a decisive role in the skyrmion formation in this class of room-temperature chiral magnets. The propagating spin-wave spectroscopy can thus be an efficient tool to study DM interaction in bulk single-phase compounds. Our results also demonstrate a function of spin-wave diode based on chiral crystal structures at room temperature.
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, combined with spin-orbit torque results, in efficient switching. The interfacial origin is confirmed through thickness dependence measurements of the DMI, revealing the characteristic 1/thickness dependence with one order of magnitude longer decay length compared to metallic layers. We combine chiral spin structures and spin-orbit torques for efficient switching and identify skyrmions that allow us to establish the GGG/TmIG interface as the origin of the DMI.
We have used Brillouin Light Scattering spectroscopy to independently determine the in-plane Magneto-Crystalline Anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI) in out-of-plane magnetized Au/Co/W(110). We found that the DMI strength is 2-3 times larger along the bcc$[bar{1}10]$ than along the bcc$[001]$ direction. We use analytical considerations to illustrate the relationship between the crystal symmetry of the stack and the anisotropy of microscopic DMI. Such an anisotropic DMI is the first step to realize isolated elliptical skyrmions or anti-skyrmions in thin film systems with $C_{2v}$ symmetry.
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast motion of chiral textures, i.e., Neel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption and high processing speed. We have engineered epitaxial structures where an epitaxial ferromagnetic Co layer is sandwiched between an epitaxial Pt(111) buffer grown in turn onto MgO(111) substrates and a graphene layer. We provide evidence of a graphene-induced enhancement of the perpendicular magnetic anisotropy up to 4 nm thick Co films, and of the existence of chiral left-handed Neel-type domain walls stabilized by the effective Dzyaloshinskii-Moriya interaction (DMI) in the stack. The experiments show evidence of a sizeable DMI at the gr/Co interface, which is described in terms of a conduction electron mediated Rashba-DMI mechanism and points opposite to the Spin Orbit Coupling-induced DMI at the Co/Pt interface. In addition, the presence of graphene results in: i) a surfactant action for the Co growth, producing an intercalated, flat, highly perfect fcc film, pseudomorphic with Pt and ii) an efficient protection from oxidation. The magnetic chiral texture is stable at room temperature and grown on insulating substrate. Our findings open new routes to control chiral spin structures using interfacial engineering in graphene-based systems for future spin-orbitronics devices fully integrated on oxide substrates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا