Do you want to publish a course? Click here

The universal character of Zwanzigers horizon function in Euclidean Yang-Mills theories

87   0   0.0 ( 0 )
 Added by David Dudal
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanzigers horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanzigers horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region $Omega$ in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region $Omega$ acquires a gauge independent meaning in the class of the physical correlators.



rate research

Read More

In order to construct a gauge invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge invariant transverse configurations A^h. Such configurations can be obtained through the minimization of the functional A^2_{min} along the gauge orbit within the BRST invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of non-perturbative aspects of the theory in a BRST invariant and gauge parameter independent way. In particular, it turns out that the poles of <A^h A^h> are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST invariant formulation introduced before. Moreover, the correlator <A^h A^h> enables us to attach a BRST invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of <A^h A^h> as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use <A^h A^h> to probe the pole structure of the massive gauge boson in a gauge invariant fashion.
Magnetic degrees of freedom are manifested through violations of the Bianchi identities and associated with singular fields. Moreover, these singularities should not induce color non-conservation. We argue that the resolution of the constraint is that the singular fields, or defects are Abelian in nature. Recently proposed surface operators seem to represent a general solution to this constraint and can serve as a prototype of magnetic degrees of freedom. Some basic lattice observations, such as the Abelian dominance of the confining fields, are explained then as consequences of the original non-Abelian invariance.
We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{rm min}$ can be cast in local form through the introduction of an auxiliary Stueckelberg field. The localization procedure gives rise to an unconventional kind of Stueckelberg-type action which turns out to be renormalizable to all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous dimension of the operator $A^2_{rm min}$ turns out to be independent from the gauge parameter $alpha$ entering the gauge-fixing condition, being thus given by the anomalous dimension of the operator $A^2$ in the Landau gauge.
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.
Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator by a self-consistent dynamically generated mass parameter, the Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the propagator features a non-trivial set of phases with poles of different nature, leading to the possible interpretation of a confinfing to deconfining phase transition. Inhere, we restore the BRST symmetry which is softly broken by the elimination of gauge copies and provide a BRST-invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge parameter independence of physical results. We also discuss the generation of condensates due to the infrared relevance of infinitesimal Gribov copies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا