Do you want to publish a course? Click here

Surface operators and magnetic degrees of freedom in Yang-Mills theories

120   0   0.0 ( 0 )
 Added by Adriano Di Giacomo
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Magnetic degrees of freedom are manifested through violations of the Bianchi identities and associated with singular fields. Moreover, these singularities should not induce color non-conservation. We argue that the resolution of the constraint is that the singular fields, or defects are Abelian in nature. Recently proposed surface operators seem to represent a general solution to this constraint and can serve as a prototype of magnetic degrees of freedom. Some basic lattice observations, such as the Abelian dominance of the confining fields, are explained then as consequences of the original non-Abelian invariance.



rate research

Read More

Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator by a self-consistent dynamically generated mass parameter, the Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the propagator features a non-trivial set of phases with poles of different nature, leading to the possible interpretation of a confinfing to deconfining phase transition. Inhere, we restore the BRST symmetry which is softly broken by the elimination of gauge copies and provide a BRST-invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge parameter independence of physical results. We also discuss the generation of condensates due to the infrared relevance of infinitesimal Gribov copies.
The spectral properties of a set of local gauge (BRST) invariant composite operators are investigated in the $SU(2)$ Yang--Mills--Higgs model with a single Higgs field in the fundamental representation, quantized in the t Hooft $R_{xi}$-gauge. These operators can be thought of as a BRST invariant version of the elementary fields of the theory, the Higgs and gauge fields, with which they share a gauge independent pole mass. The two-point correlation functions of both BRST invariant composite operators and elementary fields, as well as their spectral functions, are investigated at one-loop order. It is shown that the spectral functions of the elementary fields suffer from a strong unphysical dependence from the gauge parameter $xi$, and can even exhibit positivity violating behaviour. In contrast, the BRST invariant local operators exhibit a well defined positive spectral density.
Maximal t Hooft loops are studied in SO(3) lattice gauge theory at finite temperature T. Tunneling barriers among twist sectors causing loss of ergodicity for local update algorithms are overcome through parallel tempering, enabling us to measure the vortex free energy F and to identify a deconfinement transition at some $beta_A^{crit}$. The behavior of F below $beta_A^{crit}$ shows however striking differences with what is expected from discretizations in the fundamental representation.
514 - Marco Frasca 2010
It is shown how, starting from a mapping theorem recently proved between massless quartic scalar field theory and Yang-Mills theory, both two-point functions and spectrum of the Yang-Mills theory can be obtained. These results compare very well with respect to lattice computations.
In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanzigers horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanzigers horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region $Omega$ in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region $Omega$ acquires a gauge independent meaning in the class of the physical correlators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا