Do you want to publish a course? Click here

Non-Maxwellian fast particle effects in gyrokinetic GENE simulations

73   0   0.0 ( 0 )
 Added by Alessandro Di Siena
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytic, e.g. slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.



rate research

Read More

The first experimental campaigns have proven that, due to the optimization of the magnetic configuration with respect to neoclassical transport, the contribution of turbulence is essential to understand and predict the total particle and energy transport in Wendelstein 7-X (W7-X). This has spurred much work on gyrokinetic modelling for the interpretation of the available experimental results and for the preparation of the next campaigns. At the same time, new stellarator gyrokinetic codes have just been or are being developed. It is therefore desirable to have a sufficiently complete, documented and verified set of gyrokinetic simulations in W7-X geometry against which new codes or upgrades of existing codes can be tested and benchmarked. This paper attemps to provide such a set of simulations in the form of a comprehensive benchmark between the recently developed code stella and the well-established code GENE. The benchmark consists of electrostatic gyrokinetic simulations in W7-X magnetic geometry and includes different flux tubes, linear ion-temperature-gradient (ITG) and trapped-electron-mode (TEM)} stability analyses, computation of linear zonal flow responses and calculation of ITG-driven heat fluxes.
Results of the first validation of large guide field, $B_g / delta B_0 gg 1$, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant $beta_i = 0.01$ and solar wind relevant $beta_i = 1$ are presented, where $delta B_0$ is the reconnecting field. Particle-in-cell (PIC) simulations scan a wide range of guide magnetic field strength to test for convergence to the gyrokinetic limit. The gyrokinetic simulations display a high degree of morphological symmetry, to which the PIC simulations converge when $beta_i B_g / delta B_0 gtrsim 1$ and $B_g / delta B_0 gg 1$. In the regime of convergence, the reconnection rate, relative energy conversion, and overall magnitudes are found to match well between the PIC and gyrokinetic simulations, implying that gyrokinetics is capable of making accurate predictions well outside its regime of formal applicability. These results imply that in the large guide field limit many quantities resulting from the nonlinear evolution of reconnection scale linearly with the guide field.
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.
62 - Hong Wang , Jiulin Du , Rui Huo 2021
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied. The average collision frequencies of electron-neutral-particle in the plasmas are derived accurately. We find that these collision frequencies are significantly dependent on the power-law spectral indices of non-Maxwellian distribution functions and so they are generally different from the collision frequencies in the plasmas with a Maxwellian velocity distribution, which will affect the transport properties of the charged particles in the plasmas. Numerically analyses are made to show the roles of the spectral indices in the average collision frequencies respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا