No Arabic abstract
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
The tearing mode instability is one important mechanism that may explain the triggering of fast magnetic reconnection in astrophysical plasmas such as the solar corona and the Earths magnetosphere. In this paper, the linear stability analysis of the tearing mode is carried out for a current sheet in the presence of a guide field, including the Hall effect. We show that the presence of a strong guide field does not modify the most unstable mode in the two-dimensional wave vector space orthogonal to the current gradient direction, which remains the fastest growing parallel mode. With the Hall effect, the inclusion of a guide field turns the non-dispersive propagation along the guide field direction to a dispersive one. The oblique modes have a wave-like structure along the normal direction of the current sheet and a strong guide field suppresses this structure while making the eigen-functions asymmetric.
The first gyrokinetic simulations of plasma turbulence in the Texas Helimak device, a simple magnetized torus, are presented. The device has features similar to the scrape-off layer region of tokamaks, such as bad-curvature-driven instabilities and sheath boundary conditions on the end plates, which are included in these simulations. Comparisons between simulations and measurements from the experiment show similarities, including equilibrium profiles and fluctuation amplitudes that approach experimental values, but also some important quantitative differences. Both experimental and simulation results exhibit turbulence statistics that are characteristic of blob transport.
The effects of line-tying on resistive tearing instability in slab geometry is studied within the framework of reduced magnetohydrodynamics (RMHD).citep{KadomtsevP1974,Strauss1976} It is found that line-tying has a stabilizing effect. The tearing mode is stabilized when the system length $L$ is shorter than a critical length $L_{c}$, which is independent of the resistivity $eta$. When $L$ is not too much longer than $L_{c}$, the growthrate $gamma$ is proportional to $eta$ . When $L$ is sufficiently long, the tearing mode scaling $gammasimeta^{3/5}$ is recovered. The transition from $gammasimeta$ to $gammasimeta^{3/5}$ occurs at a transition length $L_{t}simeta^{-2/5}$.
In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.
Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytic, e.g. slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.