No Arabic abstract
This paper presents multiple-modes Scanning Probe Microscopy (SPM) studies on characterize resistance switching (RS), polarization rotation (PO) and surface potential changes in copper doped ZnO (ZnO:Cu) thin films. The bipolar RS behavior is confirmed by conductive Atomic Force Microscopy (c-AFM). The PO with almost 180{deg} phase angle is confirmed by using the vertical and lateral Piezoresponse Force Microscopy (PFM). In addition, it elucidates that obvious polarization rotation behavior can be observed in the sample with increasing Cu concentration. Furthermore, correlation of the RS behavior with PO behavior has been studied by performing various mode SPM measurements on the same location. The electric field resulted from the opposite polarization orientation are corresponded to the different resistance states. It is found that the region with the polarization in downward direction has low resistance state (LRS), whereas the region with upward polarization has high resistance state (HRS). In addition, the Piezoresponse Force Spectroscopy (PFS) and Switching Spectroscopy PFM (SS-PFM) measurements further confirm that the existence of the built-in field due to the uncomplemented polarization may affect the depletion region and hence contribute to the RS behavior. In addition, Kelvin Probe Force Microscopy (KPFM) results show that, when ZnO-based thin films is subjected to negative and then followed by positive sample bias, injection charge limit current is dominated.
Copper ferrite thin films were rf sputtered at a power of 50W. The as deposited films were annealed in air at 800{deg}C and slow cooled. The transmission electron microscope (TEM) studies were carried out on as deposited as well as on slow cooled film. Significantly larger defect concentration, including stacking faults, was observed in 50W as deposited films than the films deposited at a higher rf power of 200W. The film annealed at 800{deg}C and then slow cooled showed an unusual grain growth upto 180nm for a film thickness of ~240nm. These grains showed Kikuchi pattern.
In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structure and morphology and synthesized by pulsed laser deposition (PLD) under different oxygen pressure conditions. The comparison of Raman data for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry and doping. Moreover Raman measurements with three different excitation lines (532, 457 and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precision synthesis techniques, such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD), provide a high degree of control over these systems, there remains a disconnect between ideal and realized materials. Because thin films adopt structures and chemistries distinct from their bulk counterparts, it is often difficult to predict what properties will emerge. The complex energy landscape of the synthesis process is also strongly influenced by non-equilibrium growth conditions imposed by the substrate, as well as the kinetics of thin film crystallization and fluctuations in process variables, all of which can lead to significant deviations from targeted outcomes. High-resolution structural and chemical characterization techniques, as described in this volume, are needed to verify growth models, bound theoretical calculations, and guide materials design. While many characterization options exist, most are spatially-averaged or indirect, providing only partial insight into the complex behavior of these systems. Over the past several decades, scanning transmission electron microscopy (STEM) has become a cornerstone of oxide heterostructure characterization owing to its ability to simultaneously resolve structure, chemistry, and defects at the highest spatial resolution. STEM methods are an essential complement to averaged scattering techniques, offering a direct picture of resulting materials that can inform and refine the growth process to achieve targeted properties. There is arguably no other technique that can provide such a broad array of information at the atomic-scale, all within a single experimental session.
Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. We demonstrate coherent propagation of an oxidation front in single-crystal Cu thin film to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color RGB indices is realized by precise control of oxide-layer thickness; our samples covered ~50.4% of the sRGB color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from oxide pigment (complex dielectric functions of Cu2O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. We further demonstrate laser-oxide lithography with micron-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.
The graphene moire structures on metals, as they demonstrate both long (moire) and short (atomic) scale ordered structures, are the ideal systems for the application of scanning probe methods. Here we present the complex studies of the graphene/Ir(111) system by means of 3D scanning tunnelling and atomic force microscopy/spectroscopy as well as Kelvin-probe force microscopy. All results clearly demonstrate a variation of the moire and atomic scale contrasts as a function of the bias voltage as well as the distance between the scanning probe and the sample, allowing to discriminate between topographic and electronic contributions in the imaging of a graphene layer on metals. The presented results are accompanied by the state-of-the-art density functional theory calculations demonstrating the excellent agreement between theoretical and experimental data.