Do you want to publish a course? Click here

Higgs Pair Production at Future Hadron Colliders: From Kinematics to Dynamics

165   0   0.0 ( 0 )
 Added by Felix Kling
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The measurement of the triple Higgs coupling is a key benchmark for the LHC and future colliders. It directly probes the Higgs potential and its fundamental properties in connection to new physics beyond the Standard Model. There exist two phase space regions with an enhanced sensitivity to the Higgs self-coupling, the Higgs pair production threshold and an intermediate top pair threshold. We show how the invariant mass distribution of the Higgs pair offers a systematic way to extract the Higgs self-coupling, focusing on the leading channel $ppto hh+Xto bbar b gammagamma+X$. We utilize new features of the signal events at higher energies and estimate the potential of a high-energy upgrade of the LHC and a future hadron collider with realistic simulations. We find that the high-energy upgrade of the LHC to 27 TeV would reach a 5$sigma$ observation with an integrated luminosity of 2.5 ab$^{-1}$. It would have the potential to reach 15% (30%) accuracy at the 68% (95%) confidence level to determine the SM Higgs boson self-coupling. A future 100 TeV collider could improve the self-coupling measurement to better than 5% (10%) at the 68% (95%) confidence level.



rate research

Read More

We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large $tan beta$, neutral Higgs boson pair production might even be observable in the $4 b$ final state during the next run of the Tevatron collider.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
248 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
167 - G. Bozzi 2007
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re--emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا