No Arabic abstract
Multi-image alignment, bringing a group of images into common register, is an ubiquitous problem and the first step of many applications in a wide variety of domains. As a result, a great amount of effort is being invested in developing efficient multi-image alignment algorithms. Little has been done, however, to answer fundamental practical questions such as: what is the comparative performance of existing methods? is there still room for improvement? under which conditions should one technique be preferred over another? does adding more images or prior image information improve the registration results? In this work, we present a thorough analysis and evaluation of the main multi-image alignment methods which, combined with theoretical limits in multi-image alignment performance, allows us to organize them under a common framework and provide practical answers to these essential questions.
Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
With deep learning becoming the dominant approach in computer vision, the use of representations extracted from Convolutional Neural Nets (CNNs) is quickly gaining ground on Fisher Vectors (FVs) as favoured state-of-the-art global image descriptors for image instance retrieval. While the good performance of CNNs for image classification are unambiguously recognised, which of the two has the upper hand in the image retrieval context is not entirely clear yet. In this work, we propose a comprehensive study that systematically evaluates FVs and CNNs for image retrieval. The first part compares the performances of FVs and CNNs on multiple publicly available data sets. We investigate a number of details specific to each method. For FVs, we compare sparse descriptors based on interest point detectors with dense single-scale and multi-scale variants. For CNNs, we focus on understanding the impact of depth, architecture and training data on retrieval results. Our study shows that no descriptor is systematically better than the other and that performance gains can usually be obtained by using both types together. The second part of the study focuses on the impact of geometrical transformations such as rotations and scale changes. FVs based on interest point detectors are intrinsically resilient to such transformations while CNNs do not have a built-in mechanism to ensure such invariance. We show that performance of CNNs can quickly degrade in presence of rotations while they are far less affected by changes in scale. We then propose a number of ways to incorporate the required invariances in the CNN pipeline. Overall, our work is intended as a reference guide offering practically useful and simply implementable guidelines to anyone looking for state-of-the-art global descriptors best suited to their specific image instance retrieval problem.
The SMEFTsim package is designed to enable automated computations in the Standard Model Effective Field Theory (SMEFT), where the SM Lagrangian is extended with a complete basis of dimension six operators. It contains a set of models written in FeynRules and pre-exported to the UFO format, for usage within Monte Carlo event generators. The models differ in the flavor assumptions and in the input parameters chosen for the electroweak sector. The present document provides a self-contained, pedagogical reference that collects all the theoretical and technical aspects relevant to the use of SMEFTsim and it documents the release of version 3.0. Compared to the previous release, the description of Higgs production via gluon-fusion in the SM has been significantly improved, two flavor assumptions for studies in the top quark sector have been added, and a new feature has been implemented, that allows the treatment of linearized SMEFT corrections to the propagators of unstable particles.
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the presence of mixed data (i.e., data where some variables are continuous, while others are categorical), a known time ordering between variables, and missing data. Throughout, we point out the relative strengths and limitations of each package, as well as give practical recommendations. We hope this guide helps anyone who is interested in performing constraint-based causal discovery on their data.
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.