No Arabic abstract
With the popularity of deep learning (DL), artificial intelligence (AI) has been applied in many areas of human life. Neural network or artificial neural network (NN), the main technique behind DL, has been extensively studied to facilitate computer vision and natural language recognition. However, the more we rely on information technology, the more vulnerable we are. That is, malicious NNs could bring huge threat in the so-called coming AI era. In this paper, for the first time in the literature, we propose a novel approach to design and insert powerful neural-level trojans or PoTrojan in pre-trained NN models. Most of the time, PoTrojans remain inactive, not affecting the normal functions of their host NN models. PoTrojans could only be triggered in very rare conditions. Once activated, however, the PoTrojans could cause the host NN models to malfunction, either falsely predicting or classifying, which is a significant threat to human society of the AI era. We would explain the principles of PoTrojans and the easiness of designing and inserting them in pre-trained deep learning models. PoTrojans doesnt modify the existing architecture or parameters of the pre-trained models, without re-training. Hence, the proposed method is very efficient.
Deep Learning has recently become hugely popular in machine learning, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level DP applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications can be compromised are not well-understood since neural networks are usually viewed as a black box. In this paper, we introduce a highly practical backdoor attack achieved with a set of reverse-engineering techniques over compiled deep learning models. The core of the attack is a neural conditional branch constructed with a trigger detector and several operators and injected into the victim model as a malicious payload. The attack is effective as the conditional logic can be flexibly customized by the attacker, and scalable as it does not require any prior knowledge from the original model. We evaluated the attack effectiveness using 5 state-of-the-art deep learning models and real-world samples collected from 30 users. The results demonstrated that the injected backdoor can be triggered with a success rate of 93.5%, while only brought less than 2ms latency overhead and no more than 1.4% accuracy decrease. We further conducted an empirical study on real-world mobile deep learning apps collected from Google Play. We found 54 apps that were vulnerable to our attack, including popular and security-critical ones. The results call for the awareness of deep learning application developers and auditors to enhance the protection of deployed models.
Intuitively, a backdoor attack against Deep Neural Networks (DNNs) is to inject hidden malicious behaviors into DNNs such that the backdoor model behaves legitimately for benign inputs, yet invokes a predefined malicious behavior when its input contains a malicious trigger. The trigger can take a plethora of forms, including a special object present in the image (e.g., a yellow pad), a shape filled with custom textures (e.g., logos with particular colors) or even image-wide stylizations with special filters (e.g., images altered by Nashville or Gotham filters). These filters can be applied to the original image by replacing or perturbing a set of image pixels.
Many real-world data comes in the form of graphs, such as social networks and protein structure. To fully utilize the information contained in graph data, a new family of machine learning (ML) models, namely graph neural networks (GNNs), has been introduced. Previous studies have shown that machine learning models are vulnerable to privacy attacks. However, most of the current efforts concentrate on ML models trained on data from the Euclidean space, like images and texts. On the other hand, privacy risks stemming from GNNs remain largely unstudied. In this paper, we fill the gap by performing the first comprehensive analysis of node-level membership inference attacks against GNNs. We systematically define the threat models and propose three node-level membership inference attacks based on an adversarys background knowledge. Our evaluation on three GNN structures and four benchmark datasets shows that GNNs are vulnerable to node-level membership inference even when the adversary has minimal background knowledge. Besides, we show that graph density and feature similarity have a major impact on the attacks success. We further investigate two defense mechanisms and the empirical results indicate that these defenses can reduce the attack performance but with moderate utility loss.