Do you want to publish a course? Click here

From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval

111   0   0.0 ( 0 )
 Added by Tuan N.A. Hoang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In the large-scale image retrieval task, the two most important requirements are the discriminability of image representations and the efficiency in computation and storage of representations. Regarding the former requirement, Convolutional Neural Network (CNN) is proven to be a very powerful tool to extract highly discriminative local descriptors for effective image search. Additionally, in order to further improve the discriminative power of the descriptors, recent works adopt fine-tuned strategies. In this paper, taking a different approach, we propose a novel, computationally efficient, and competitive framework. Specifically, we firstly propose various strategies to compute masks, namely SIFT-mask, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and eliminate redundant features. Our in-depth analyses demonstrate that proposed masking schemes are effective to address the burstiness drawback and improve retrieval accuracy. Secondly, we propose to employ recent embedding and aggregating methods which can significantly boost the feature discriminability. Regarding the computation and storage efficiency, we include a hashing module to produce very compact binary image representations. Extensive experiments on six image retrieval benchmarks demonstrate that our proposed framework achieves the state-of-the-art retrieval performances.



rate research

Read More

We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks as a black box to produce features, our method leverages a deep architecture trained for the specific task of image retrieval. Our contribution is twofold: (i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features; and (ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor. We show that using clean training data is key to the success of our approach. To that aim, we use a large scale but noisy landmark dataset and develop an automatic cleaning approach. The proposed architecture produces a global image representation in a single forward pass. Our approach significantly outperforms previous approaches based on global descriptors on standard datasets. It even surpasses most prior works based on costly local descriptor indexing and spatial verification. Additional material is available at www.xrce.xerox.com/Deep-Image-Retrieval.
91 - Mattis Paulin 2016
Convolutional neural networks (CNNs) have recently received a lot of attention due to their ability to model local stationary structures in natural images in a multi-scale fashion, when learning all model parameters with supervision. While excellent performance was achieved for image classification when large amounts of labeled visual data are available, their success for un-supervised tasks such as image retrieval has been moderate so far. Our paper focuses on this latter setting and explores several methods for learning patch descriptors without supervision with application to matching and instance-level retrieval. To that effect, we propose a new family of convolutional descriptors for patch representation , based on the recently introduced convolutional kernel networks. We show that our descriptor, named Patch-CKN, performs better than SIFT as well as other convolutional networks learned by artificially introducing supervision and is significantly faster to train. To demonstrate its effectiveness, we perform an extensive evaluation on standard benchmarks for patch and image retrieval where we obtain state-of-the-art results. We also introduce a new dataset called RomePatches, which allows to simultaneously study descriptor performance for patch and image retrieval.
Most image instance retrieval pipelines are based on comparison of vectors known as global image descriptors between a query image and the database images. Due to their success in large scale image classification, representations extracted from Convolutional Neural Networks (CNN) are quickly gaining ground on Fisher Vectors (FVs) as state-of-the-art global descriptors for image instance retrieval. While CNN-based descriptors are generally remarked for good retrieval performance at lower bitrates, they nevertheless present a number of drawbacks including the lack of robustness to common object transformations such as rotations compared with their interest point based FV counterparts. In this paper, we propose a method for computing invariant global descriptors from CNNs. Our method implements a recently proposed mathematical theory for invariance in a sensory cortex modeled as a feedforward neural network. The resulting global descriptors can be made invariant to multiple arbitrary transformation groups while retaining good discriminativeness. Based on a thorough empirical evaluation using several publicly available datasets, we show that our method is able to significantly and consistently improve retrieval results every time a new type of invariance is incorporated. We also show that our method which has few parameters is not prone to overfitting: improvements generalize well across datasets with different properties with regard to invariances. Finally, we show that our descriptors are able to compare favourably to other state-of-the-art compact descriptors in similar bitranges, exceeding the highest retrieval results reported in the literature on some datasets. A dedicated dimensionality reduction step --quantization or hashing-- may be able to further improve the competitiveness of the descriptors.
While deep learning has become a key ingredient in the top performing methods for many computer vision tasks, it has failed so far to bring similar improvements to instance-level image retrieval. In this article, we argue that reasons for the underwhelming results of deep methods on image retrieval are threefold: i) noisy training data, ii) inappropriate deep architecture, and iii) suboptimal training procedure. We address all three issues. First, we leverage a large-scale but noisy landmark dataset and develop an automatic cleaning method that produces a suitable training set for deep retrieval. Second, we build on the recent R-MAC descriptor, show that it can be interpreted as a deep and differentiable architecture, and present improvements to enhance it. Last, we train this network with a siamese architecture that combines three streams with a triplet loss. At the end of the training process, the proposed architecture produces a global image representation in a single forward pass that is well suited for image retrieval. Extensive experiments show that our approach significantly outperforms previous retrieval approaches, including state-of-the-art methods based on costly local descriptor indexing and spatial verification. On Oxford 5k, Paris 6k and Holidays, we respectively report 94.7, 96.6, and 94.8 mean average precision. Our representations can also be heavily compressed using product quantization with little loss in accuracy. For additional material, please see www.xrce.xerox.com/Deep-Image-Retrieval.
Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا