No Arabic abstract
Most image instance retrieval pipelines are based on comparison of vectors known as global image descriptors between a query image and the database images. Due to their success in large scale image classification, representations extracted from Convolutional Neural Networks (CNN) are quickly gaining ground on Fisher Vectors (FVs) as state-of-the-art global descriptors for image instance retrieval. While CNN-based descriptors are generally remarked for good retrieval performance at lower bitrates, they nevertheless present a number of drawbacks including the lack of robustness to common object transformations such as rotations compared with their interest point based FV counterparts. In this paper, we propose a method for computing invariant global descriptors from CNNs. Our method implements a recently proposed mathematical theory for invariance in a sensory cortex modeled as a feedforward neural network. The resulting global descriptors can be made invariant to multiple arbitrary transformation groups while retaining good discriminativeness. Based on a thorough empirical evaluation using several publicly available datasets, we show that our method is able to significantly and consistently improve retrieval results every time a new type of invariance is incorporated. We also show that our method which has few parameters is not prone to overfitting: improvements generalize well across datasets with different properties with regard to invariances. Finally, we show that our descriptors are able to compare favourably to other state-of-the-art compact descriptors in similar bitranges, exceeding the highest retrieval results reported in the literature on some datasets. A dedicated dimensionality reduction step --quantization or hashing-- may be able to further improve the competitiveness of the descriptors.
The goal of this work is the computation of very compact binary hashes for image instance retrieval. Our approach has two novel contributions. The first one is Nested Invariance Pooling (NIP), a method inspired from i-theory, a mathematical theory for computing group invariant transformations with feed-forward neural networks. NIP is able to produce compact and well-performing descriptors with visual representations extracted from convolutional neural networks. We specifically incorporate scale, translation and rotation invariances but the scheme can be extended to any arbitrary sets of transformations. We also show that using moments of increasing order throughout nesting is important. The NIP descriptors are then hashed to the target code size (32-256 bits) with a Restricted Boltzmann Machine with a novel batch-level regularization scheme specifically designed for the purpose of hashing (RBMH). A thorough empirical evaluation with state-of-the-art shows that the results obtained both with the NIP descriptors and the NIP+RBMH hashes are consistently outstanding across a wide range of datasets.
Hashing technology has been widely used in image retrieval due to its computational and storage efficiency. Recently, deep unsupervised hashing methods have attracted increasing attention due to the high cost of human annotations in the real world and the superiority of deep learning technology. However, most deep unsupervised hashing methods usually pre-compute a similarity matrix to model the pairwise relationship in the pre-trained feature space. Then this similarity matrix would be used to guide hash learning, in which most of the data pairs are treated equivalently. The above process is confronted with the following defects: 1) The pre-computed similarity matrix is inalterable and disconnected from the hash learning process, which cannot explore the underlying semantic information. 2) The informative data pairs may be buried by the large number of less-informative data pairs. To solve the aforementioned problems, we propose a Deep Self-Adaptive Hashing (DSAH) model to adaptively capture the semantic information with two special designs: Adaptive Neighbor Discovery (AND) and Pairwise Information Content (PIC). Firstly, we adopt the AND to initially construct a neighborhood-based similarity matrix, and then refine this initial similarity matrix with a novel update strategy to further investigate the semantic structure behind the learned representation. Secondly, we measure the priorities of data pairs with PIC and assign adaptive weights to them, which is relies on the assumption that more dissimilar data pairs contain more discriminative information for hash learning. Extensive experiments on several datasets demonstrate that the above two technologies facilitate the deep hashing model to achieve superior performance.
We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks as a black box to produce features, our method leverages a deep architecture trained for the specific task of image retrieval. Our contribution is twofold: (i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features; and (ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor. We show that using clean training data is key to the success of our approach. To that aim, we use a large scale but noisy landmark dataset and develop an automatic cleaning approach. The proposed architecture produces a global image representation in a single forward pass. Our approach significantly outperforms previous approaches based on global descriptors on standard datasets. It even surpasses most prior works based on costly local descriptor indexing and spatial verification. Additional material is available at www.xrce.xerox.com/Deep-Image-Retrieval.
With deep learning becoming the dominant approach in computer vision, the use of representations extracted from Convolutional Neural Nets (CNNs) is quickly gaining ground on Fisher Vectors (FVs) as favoured state-of-the-art global image descriptors for image instance retrieval. While the good performance of CNNs for image classification are unambiguously recognised, which of the two has the upper hand in the image retrieval context is not entirely clear yet. In this work, we propose a comprehensive study that systematically evaluates FVs and CNNs for image retrieval. The first part compares the performances of FVs and CNNs on multiple publicly available data sets. We investigate a number of details specific to each method. For FVs, we compare sparse descriptors based on interest point detectors with dense single-scale and multi-scale variants. For CNNs, we focus on understanding the impact of depth, architecture and training data on retrieval results. Our study shows that no descriptor is systematically better than the other and that performance gains can usually be obtained by using both types together. The second part of the study focuses on the impact of geometrical transformations such as rotations and scale changes. FVs based on interest point detectors are intrinsically resilient to such transformations while CNNs do not have a built-in mechanism to ensure such invariance. We show that performance of CNNs can quickly degrade in presence of rotations while they are far less affected by changes in scale. We then propose a number of ways to incorporate the required invariances in the CNN pipeline. Overall, our work is intended as a reference guide offering practically useful and simply implementable guidelines to anyone looking for state-of-the-art global descriptors best suited to their specific image instance retrieval problem.
Image hash algorithms generate compact binary representations that can be quickly matched by Hamming distance, thus become an efficient solution for large-scale image retrieval. This paper proposes RV-SSDH, a deep image hash algorithm that incorporates the classical VLAD (vector of locally aggregated descriptors) architecture into neural networks. Specifically, a novel neural network component is formed by coupling a random VLAD layer with a latent hash layer through a transform layer. This component can be combined with convolutional layers to realize a hash algorithm. We implement RV-SSDH as a point-wise algorithm that can be efficiently trained by minimizing classification error and quantization loss. Comprehensive experiments show this new architecture significantly outperforms baselines such as NetVLAD and SSDH, and offers a cost-effective trade-off in the state-of-the-art. In addition, the proposed random VLAD layer leads to satisfactory accuracy with low complexity, thus shows promising potentials as an alternative to NetVLAD.