In this paper we give an improved upper bound for critical value $lambda_c$ of the basic contact process on the lattice $mathbb{Z}^d$ with $dgeq 3$. As a direct corollary of out result, [ lambda_cleq 0.384. ] when $d=3$.
We consider the Stavskayas process, which is a two-states Probabilistic Celular Automata defined on a one-dimensional lattice. The process is defined in such a way that the state of any vertex depends only on itself and on the state of its right-adjacent neighbor. This process was one of the first multicomponent systems with local interaction, for which has been proved rigorously the existence of a kind of phase transition. However, the exact localization of its critical value remains as an open problem. In this work we provide a new lower bound for the critical value. The last one was obtained by Andrei Toom, fifty years ago.
A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random number of particles. At time 0, the particles at the origin are activated and assigned type 1 and the particles at one other site are activated and assigned type 2, while all other particles are sleeping. When an active type $i$ particle moves to a new site, any sleeping particles there are activated and assigned type $i$, with an arbitrary tie-breaker deciding the type if the site is hit by particles of both types in the same time step. We show that the event $G_i$ that type $i$ activates infinitely many particles has positive probability for all $p_1,p_2in(0,1]$ ($i=1,2$). Furthermore, if $p_1=p_2$, then the types can coexist in the sense that $mathbb{P}(G_1cap G_2)>0$. We also formulate several open problems. For instance, we conjecture that, when the initial number of particles per site has a heavy tail, the types can coexist also when $p_1 eq p_2$.
In this paper we prove that, under the assumption of quasi-transitivity, if a branching random walk on ${{mathbb{Z}}^d}$ survives locally (at arbitrarily large times there are individuals alive at the origin), then so does the same process when restricted to the infinite percolation cluster ${{mathcal{C}}_{infty}}$ of a supercritical Bernoulli percolation. When no more than $k$ individuals per site are allowed, we obtain the $k$-type contact process, which can be derived from the branching random walk by killing all particles that are born at a site where already $k$ individuals are present. We prove that local survival of the branching random walk on ${{mathbb{Z}}^d}$ also implies that for $k$ sufficiently large the associated $k$-type contact process survives on ${{mathcal{C}}_{infty}}$. This implies that the strong critical parameters of the branching random walk on ${{mathbb{Z}}^d}$ and on ${{mathcal{C}}_{infty}}$ coincide and that their common value is the limit of the sequence of strong critical parameters of the associated $k$-type contact processes. These results are extended to a family of restrained branching random walks, that is, branching random walks where the success of the reproduction trials decreases with the size of the population in the target site.
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is that of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.