Do you want to publish a course? Click here

Polynomial Invariants for Affine Programs

90   0   0.0 ( 0 )
 Added by Amaury Pouly
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We exhibit an algorithm to compute the strongest polynomial (or algebraic) invariants that hold at each location of a given affine program (i.e., a program having only non-deterministic (as opposed to conditional) branching and all of whose assignments are given by affine expressions). Our main tool is an algebraic result of independent interest: given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate.



rate research

Read More

Classification of Non-linear Boolean functions is a long-standing problem in the area of theoretical computer science. In this paper, effort has been made to achieve a systematic classification of all n-variable Boolean functions, where only one affine Boolean function belongs to each class. Two different methods are proposed to achieve this classification. The first method is a recursive procedure that uses the Cartesian product of sets starting from the set of 1-variable Boolean function and in the second method classification is achieved through a set of invariant bit positions with respect to an affine function belonging to that class. The invariant bit positions also provide information concerning the size and symmetry properties of the classes/sub-classes, such that the members of classes/sub-classes satisfy certain similar properties.
We study weakest precondition reasoning about the (co)variance of outcomes and the variance of run-times of probabilistic programs with conditioning. For outcomes, we show that approximating (co)variances is computationally more difficult than approximating expected values. In particular, we prove that computing both lower and upper bounds for (co)variances is $Sigma^{0}_{2}$-complete. As a consequence, neither lower nor upper bounds are computably enumerable. We therefore present invariant-based techniques that do enable enumeration of both upper and lower bounds, once appropriate invariants are found. Finally, we extend this approach to reasoning about run-time variances.
93 - Robert Rand 2021
The Heisenberg representation of quantum operators provides a powerful technique for reasoning about quantum circuits, albeit those restricted to the common (non-universal) Clifford set H, S and CNOT. The Gottesman-Knill theorem showed that we can use this representation to efficiently simulate Clifford circuits. We show that Gottesmans semantics for quantum programs can be treated as a type system, allowing us to efficiently characterize a common subset of quantum programs. We also show that it can be extended beyond the Clifford set to partially characterize a broad range of programs. We apply these types to reason about separable states and the superdense coding algorithm.
This paper investigates the usage of generating functions (GFs) encoding measures over the program variables for reasoning about discrete probabilistic programs. To that end, we define a denotational GF-transformer semantics for probabilistic while-programs, and show that it instantiates Kozens seminal distribution transformer semantics. We then study the effective usage of GFs for program analysis. We show that finitely expressible GFs enable checking super-invariants by means of computer algebra tools, and that they can be used to determine termination probabilities. The paper concludes by characterizing a class of -- possibly infinite-state -- programs whose semantics is a rational GF encoding a discrete phase-type distribution.
For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This contrasts with the fact that the natural polytope for this problem, formed from the convex hull of all satisfiable formulas and their satisfying assignments, has superpolynomial extension complexity. Our formulation is based on multicommodity flows. We also discuss connections of these results to the stable matching problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا