No Arabic abstract
This paper investigates the usage of generating functions (GFs) encoding measures over the program variables for reasoning about discrete probabilistic programs. To that end, we define a denotational GF-transformer semantics for probabilistic while-programs, and show that it instantiates Kozens seminal distribution transformer semantics. We then study the effective usage of GFs for program analysis. We show that finitely expressible GFs enable checking super-invariants by means of computer algebra tools, and that they can be used to determine termination probabilities. The paper concludes by characterizing a class of -- possibly infinite-state -- programs whose semantics is a rational GF encoding a discrete phase-type distribution.
We formalize the notion of nesting probabilistic programming queries and investigate the resulting statistical implications. We demonstrate that while query nesting allows the definition of models which could not otherwise be expressed, such as those involving agents reasoning about other agents, existing systems take approaches which lead to inconsistent estimates. We show how to correct this by delineating possible ways one might want to nest queries and asserting the respective conditions required for convergence. We further introduce a new online nested Monte Carlo estimator that makes it substantially easier to ensure these conditions are met, thereby providing a simple framework for designing statistically correct inference engines. We prove the correctness of this online estimator and show that, when using the recommended setup, its asymptotic variance is always better than that of the equivalent fixed estimator, while its bias is always within a factor of two.
We study weakest precondition reasoning about the (co)variance of outcomes and the variance of run-times of probabilistic programs with conditioning. For outcomes, we show that approximating (co)variances is computationally more difficult than approximating expected values. In particular, we prove that computing both lower and upper bounds for (co)variances is $Sigma^{0}_{2}$-complete. As a consequence, neither lower nor upper bounds are computably enumerable. We therefore present invariant-based techniques that do enable enumeration of both upper and lower bounds, once appropriate invariants are found. Finally, we extend this approach to reasoning about run-time variances.
The correct by construction paradigm is an important component of modern Formal Methods, and here we use the probabilistic Guarded-Command Language $mathit{pGCL}$ to illustrate its application to $mathit{probabilistic}$ programming. $mathit{pGCL}$ extends Dijkstras guarded-command language $mathit{GCL}$ with probabilistic choice, and is equipped with a correctness-preserving refinement relation $(sqsubseteq)$ that enables compact, abstract specifications of probabilistic properties to be transformed gradually to concrete, executable code by applying mathematical insights in a systematic and layered way. Characteristically for correctness by construction, as far as possible the reasoning in each refinement-step layer does not depend on earlier layers, and does not affect later ones. We demonstrate the technique by deriving a fair-coin implementation of any given discrete probability distribution. In the special case of simulating a fair die, our correct-by-construction algorithm turns out to be within spitting distance of Knuth and Yaos optimal solution.
Concurrent Constraint Programming (CCP) is a declarative model for concurrency where agents interact by telling and asking constraints (pieces of information) in a shared store. Some previous works have developed (approximated) declarative debuggers for CCP languages. However, the task of debugging concurrent programs remains difficult. In this paper we define a dynamic slicer for CCP and we show it to be a useful companion tool for the existing debugging techniques. Our technique starts by considering a partial computation (a trace) that shows the presence of bugs. Often, the quantity of information in such a trace is overwhelming, and the user gets easily lost, since she cannot focus on the sources of the bugs. Our slicer allows for marking part of the state of the computation and assists the user to eliminate most of the redundant information in order to highlight the errors. We show that this technique can be tailored to timed variants of CCP. We also develop a prototypical implementation freely available for making experiments.
Most modern (classical) programming languages support recursion. Recursion has also been successfully applied to the design of several quantum algorithms and introduced in a couple of quantum programming languages. So, it can be expected that recursion will become one of the fundamental paradigms of quantum programming. Several program logics have been developed for verification of quantum while-programs. However, there are as yet no general methods for reasoning about (mutual) recursive procedures and ancilla quantum data structure in quantum computing (with measurement). We fill the gap in this paper by proposing a parameterized quantum assertion logic and, based on which, designing a quantum Hoare logic for verifying parameterized recursive quantum programs with ancilla data and probabilistic control. The quantum Hoare logic can be used to prove partial, total, and even probabilistic correctness (by reducing to total correctness) of those quantum programs. In particular, two counterexamples for illustrating incompleteness of non-parameterized assertions in verifying recursive procedures, and, one counterexample for showing the failure of reasoning with exact probabilities based on partial correctness, are constructed. The effectiveness of our logic is shown by three main examples -- recursive quantum Markov chain (with probabilistic control), fixed-point Grovers search, and recursive quantum Fourier sampling.