Do you want to publish a course? Click here

Hybrid Nanophotonics

94   0   0.0 ( 0 )
 Added by Aleksandr Krasnok
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Advances in the field of plasmonics, that is, nanophotonics based on optical properties of metal nanostructures, paved the way for the development of ultrasensitive biological sensors and other devices whose operating principles are based on localization of an electromagnetic field at the nanometer scale. However, high dissipative losses of metal nanostructures limit their performance in many modern areas, including metasurfaces, metamaterials, and optical interconnections, which required the development of new devices that combine them with high refractive index dielectric nanoparticles. Resulting metal-dielectric (hybrid) nanostructures demonstrated many superior properties from the point of view of practical application, including moderate dissipative losses, resonant optical magnetic response, strong nonlinear optical properties, which made the development in this field the vanguard of the modern light science. This review is devoted to the current state of theoretical and experimental studies of hybrid metal-dielectric nanoantennas and nanostructures based on them, capable of selective scattering light waves, amplifying and transmitting optical signals in the desired direction, controlling the propagation of such signals, and generating optical harmonics.



rate research

Read More

336 - S. Pierini , M. DAmato , M. Joos 2020
Photons have been identified early on as a very good candidate for quantum technologies applications, as carriers of quantum information, either by polarization encoding, time encoding or spatial encoding. Quantum cryptography, quantum communications, quantum networks and quantum computing are some of the applications targeted by the so called quantum photonics. Nevertheless, it was also clear at an early stage that bulk optics for handling quantum states of light would not be the best option for these technologies. More recently, single photons, entangled photons and quantum light in general have been coupled to integrated approaches coming from classical optics in order to meet the requirements of scalability, reliability and efficiency for quantum technologies. In this article, we describe our recent advances using elongated optical nano-fibers. We also present our latest results on nanocrystals made of perovskites and discuss some of their quantum properties. Finally, we will discuss the general steps necessary in order to couple these nanoemitters efficiently with our photonic platform, based on tapered optical nanofibers.
Frequency microcombs, successors to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting, and exoplanet discoveries. To enable the frequency ruling function, microcombs must be stabilized by locking their carrier-envelop offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and Pockels nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline III-Nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave comb span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully-integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.
Tuning and reconfiguring nanophotonic components is needed to realize systems incorporating many components. The electrostatic force can deform a structure and tune its optical response. Despite the success of electrostatic actuators, they suffer from trade-offs between tuning voltage, tuning range, and on-chip area. Piezoelectric actuation could resolve all these challenges. Standard materials possess piezoelectric coefficients on the order of ${0.01}~text{nm/V}$, suggesting extremely small on-chip actuation using potentials on the order of one volt. Here we propose and demonstrate compact piezoelectric actuators, called nanobenders, that transduce tens of nanometers per volt. By leveraging the non-uniform electric field from submicron electrodes, we generate bending of a piezoelectric nanobeam. Combined with a sliced photonic crystal cavity to sense displacement, we show tuning of an optical resonance by $sim 5~text{nm/V}~({0.6}~text{THz/V})$ and between $1520$ and $1560~text{nm}$ ($sim 400$ linewidths) with only $ {4}~text{V}$. Finally, we consider other tunable nanophotonic components enabled by nanobenders.
112 - Lei Zhang , Jing Pan , Zhang Zhang 2018
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents in electronic circuitries. Here we demonstrate highly sensitive optical skin (O-skin) in which the primary sensory elements are optically driven. The simple construction of the sensors is achieved by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the highly sensitive power-leakage response of the guided modes from the MNF upon external stimuli, our optical sensors show ultrahigh sensitivity (1870/kPa), low detection limit (7 mPa) and fast response (10 microseconds) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2x2-MNF tactile sensor are demonstrated. Our results pave the way toward wearable optical devices ranging from ultrasensitive flexible sensors to optical skins.
Polaritons formed by the coupling of light and material excitations such as plasmons, phonons, or excitons enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. Recently, significant interest has been attracted by polaritons in van der Waals materials, which could lead to applications in sensing, integrated photonic circuits and detectors. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which allow it to interact with the surrounding dielectric environment comprising the low-loss phase change material, Ge$_3$Sb$_2$Te$_6$ (GST). We demonstrate waveguides which confine polaritons in a 1D geometry, and refractive optical elements such as lenses and prisms for phonon polaritons in hBN, which we characterize using scanning near field optical microscopy. Furthermore, we demonstrate metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. Our method, due to its sub-diffraction and planar nature, will enable the realization of programmable miniaturized integrated optoelectronic devices, and will lay the foundation for on-demand biosensors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا