Do you want to publish a course? Click here

Positive gravitational subsystem energies from CFT cone relative entropies

42   0   0.0 ( 0 )
 Added by Dominik Neuenfeld
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The positivity of relative entropy for spatial subsystems in a holographic CFT implies the positivity of certain quantities in the dual gravitational theory. In this note, we consider CFT subsystems whose boundaries lie on the lightcone of a point $p$. We show that the positive gravitational quantity which corresponds to the relative entropy for such a subsystem $A$ is a novel notion of energy associated with a gravitational subsystem bounded by the minimal area extremal surface $tilde{A}$ associated with $A$ and by the AdS boundary region $hat{A}$ corresponding to the part of the lightcone from $p$ bounded by $partial A$. This generalizes the results of arXiv:1605.01075 for ball-shaped regions by making use of the recent results in arXiv:1703.10656 for the vacuum modular Hamiltonian of regions bounded on lightcones. As part of our analysis, we give an analytic expression for the extremal surface in pure AdS associated with any such region $A$. We note that its form immediately implies the Markov property of the CFT vacuum (saturation of strong subadditivity) for regions bounded on the same lightcone. This gives a holographic proof of the result proven for general CFTs in arXiv:1703.10656. A similar holographic proof shows the Markov property for regions bounded on a lightsheet for non-conformal holographic theories defined by relevant perturbations of a CFT.



rate research

Read More

155 - Song He , Feng-Li Lin , 2017
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval Renyi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Renyi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinskers and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.
Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive explicit expressions in free field theory based on the real time approach. Using monotonicity properties, we obtain new inequalities that need to be satisfied by consistent renormalization group trajectories in field theory. These inequalities play the role of a second law of thermodynamics, in the context of renormalization group flows. Finally, we apply these results to a tractable Kondo model, where we evaluate the Renyi relative entropies explicitly. An outcome of this is that Andersons orthogonality catastrophe can be avoided by working on a Cauchy surface that approaches the light-cone.
We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t Hooft coupling and at order $1/N^4$, as a way to access one-loop effects in the dual supergravity theory. From these singularities we extract CFT-data by using two inversion procedures: one based on a recently proposed Froissart-Gribov inversion integral, and the other based on large spin perturbation theory. Both procedures lead to the same results and are shown to be equivalent more generally. Our computation parallels the standard S-matrix reconstruction via dispersion relations. In a suitable limit, the result of the conformal field theory calculation is compared with the one-loop graviton scattering amplitude in ten-dimensional IIB supergravity in flat space, finding perfect agreement.
55 - Stefan Hollands 2019
We consider the relative entropy between the vacuum state and a state obtained by applying an exponentiated stress tensor to the vacuum of a chiral conformal field theory on the lightray. The smearing function of the stress tensor can be viewed as a vector field on the real line generating a diffeomorphism. We show that the relative entropy is equal to $c$ times the so-called Schwarzian action of the diffeomorphism. As an application of this result, we obtain a formula for the relative entropy between the vacuum and a solitonic state.
We develop a systematic approach to compute the subsystem trace distances and relative entropies for subsystem reduced density matrices associated to excited states in different symmetry sectors of a 1+1 dimensional conformal field theory having an internal U(1) symmetry. We provide analytic expressions for the charged moments corresponding to the resolution of both relative entropies and distances for general integer $n$. For the relative entropies, these formulas are manageable and the analytic continuation to $n=1$ can be worked out in most of the cases. Conversely, for the distances the corresponding charged moments become soon untreatable as $n$ increases. A remarkable result is that relative entropies and distances are the same for all symmetry sectors, i.e. they satisfy entanglement equipartition, like the entropies. Moreover, we exploit the OPE expansion of composite twist fields, to provide very general results when the subsystem is much smaller than the total system. We focus on the massless compact boson and our results are tested against exact numerical calculations in the XX spin chain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا