Do you want to publish a course? Click here

Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport

121   0   0.0 ( 0 )
 Added by Hamish A. S. Reid
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and the inner heliosphere; currently unobtainable through other means. However, the motion of different regions of an electron beam (front, middle and back) have never been systematically analysed before. We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR in the frequency range 30 to 70 MHz and use this to probe electron beam dynamics. Methods. The rise, peak and decay times with a 0.2 MHz spectral resolution were defined for a collection of 31 type III bursts. The frequency evolution is used to ascertain the apparent velocities of the front, middle and back of the type III sources and the trends are interpreted using theoretical and numerical treatments. The type III time profile was better approximated by an asymmetric Gaussian profile, not an exponential as previously used. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were smaller than previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron beam speeds for the front, middle and back of 0.2, 0.17, 0, 15 c, respectively. Faster beam speeds correlate with smaller type III durations. We also find type III frequency bandwidth decreases as frequency decreases. The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere. The rate of expansion is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to varying ensembles of electron energies at the front, middle and back of the beam.



rate research

Read More

The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (where S stands for short) and storms of Type III radio bursts have been observed, that are not directly relates to flares and CMEs. Here, we expand our understanding on the spectral characteristic of these two different types of radio bursts based on observations from the Low Frequency Array (LOFAR). On 9 July 2013, over 3000 solar S bursts accompanied by over 800 Type III radio bursts were observed over a time period of ~8 hours. The characteristics of Type III radio bursts are consistent to previous studies, while S bursts show narrow bandwidths, durations and drift rates of about 1/2 the drift rate of Type III bursts. Type III bursts and solar S bursts occur in a region in the corona where plasma emission is the dominant emission mechanism as determined by data constrained density and magnetic field models.
The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.
327 - Patrick I. McCauley 2019
Low-frequency (80-240 MHz) radio observations of the solar corona are presented using the Murchison Widefield Array (MWA), and several discoveries are reported. The corona is reviewed, followed by chapters on Type III bursts and circularly-polarized quiescent emission. The second chapter details new Type III burst dynamics. One source component at higher frequencies splits into two at lower frequencies, where the two components rapidly diverge. This is attributed to electron beams traversing a divergent magnetic field configuration, which is supported by extreme ultraviolet jet observations outlining a coronal null point. The third chapter uses Type III burst heights as density probes. Harmonic plasma emission implies ~4x enhancements over background models. This can be explained by electron beams traveling along dense fibers or by propagation effects that elevate apparent source heights. The quiescent corona is compared to model predictions to conclude that propagation effects can largely but not entirely explain the apparent density enhancements. The fourth chapter surveys over 100 spectropolarimetric observing runs. Around 700 compact sources are detected with polarization fractions from less than 0.5% to nearly 100%. They are interpreted as plasma emission noise storm sources down to levels not previously observable. A bullseye structure is reported for coronal holes, where an outer ring surrounds an oppositely-polarized central component that does not match the sign expected of thermal bremsstrahlung. The large-scale polarization structure is shown to be well-correlated with that of a global magnetic field model. The last chapter summarizes results and outlines future work. A preliminary comparison of polarization images to model predictions is shared, along with coronal mass ejection observations revealing a radio arc that is morphologically similar to the white-light structure.
Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with CMEs and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20-90 MHz) is now possible with LOFAR, opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon.
A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. Electron beams expand along the trajectory, and using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front of the electron beams travelled at speeds from 0.2c--0.7c, significantly faster than the back of the beam that travelled between 0.12c--0.35c. The difference in speed between the front and the back elongates the electron beams in time. The rate of beam elongation has a 0.98 correlation coefficient with the peak velocity; in-line with predictions from type III observations. The inferred speeds of electron beams initially increase close to the acceleration region and then decrease through the solar corona. Larger starting densities and harder initial spectral indices result in longer and faster type III sources. Faster electron beams have higher beam energy densities, produce type IIIs with higher peak brightness temperatures and shorter FWHM durations. Higher background plasma temperatures also increase speeds, particularly at the back of the beam. We show how our predictions of electron beam evolution influences type III bandwidth and drift-rates. Our radial predictions of electron beam speed and expansion can be tested by the upcoming in situ electron beam measurements made by Solar Orbiter and Parker Solar Probe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا