Do you want to publish a course? Click here

LOFAR tied-array imaging of Type III solar radio bursts

533   0   0.0 ( 0 )
 Added by Diana Elena Morosan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.



rate research

Read More

Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.
Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, it is an outstanding question why type III bursts are more frequently observed than U-bursts or J-bursts. We use LOFAR imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. The radio sources infer a magnetic loop 1 solar radius in altitude, with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c, with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients make closed loops less facilitating for radio emission than loops that extend into interplanetary space.
The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (where S stands for short) and storms of Type III radio bursts have been observed, that are not directly relates to flares and CMEs. Here, we expand our understanding on the spectral characteristic of these two different types of radio bursts based on observations from the Low Frequency Array (LOFAR). On 9 July 2013, over 3000 solar S bursts accompanied by over 800 Type III radio bursts were observed over a time period of ~8 hours. The characteristics of Type III radio bursts are consistent to previous studies, while S bursts show narrow bandwidths, durations and drift rates of about 1/2 the drift rate of Type III bursts. Type III bursts and solar S bursts occur in a region in the corona where plasma emission is the dominant emission mechanism as determined by data constrained density and magnetic field models.
There is a wide consensus that the ubiquitous presence of magnetic reconnection events and the associated impulsive heating (nanoflares) is a strong candidate for solving the solar coronal heating problem. Whether nanoflares accelerate particles to high energies like full-sized flares is unknown. We investigate this question by studying the type III radio bursts that the nanoflares may produce on closed loops. The characteristic frequency-drifts that type III bursts exhibit can be detected using a novel application of the time-lag technique developed by Viall & Klimchuk (2012) even when there are multiple overlapping bursts. We present a simple numerical model that simulates the expected radio emission from nanoflares in an active region (AR), which we use to test and calibrate the technique. We find that in the case of closed loops the frequency spectrum of type III bursts is expected to be extremely steep such that significant emission is produced at a given frequency only for a rather narrow range of loop lengths. We also find that the signature of bursts in the time-lag signal diminishes as: (1)the variety of participating loops within that range increases; (2)the occurrence rate of bursts increases; (3) the duration of bursts increases; and (4) the brightness of the bursts decreases relative to noise. In addition, our model suggests a possible origin of type I bursts as a natural consequence of type III emission in a closed-loop geometry.
A radio interferometer uses time delays to maximize its response to radiation coming from a particular direction. These time delays compensate for differences in the time of arrival of the wavefront at the different elements of the interferometer, and for delays in the instruments signal chain. If the radio interferometer is operated as a phased array (tied array), the time delays cannot be accounted for after an observation, so they must be determined in advance. Our aim is to characterize the time delays between the stations in the core of the LOw Frequency ARray (LOFAR). We used radio holography to determine the time delays for the core stations of LOFAR (innermost 3.5 km). Using the multibeaming capability of LOFAR we map the voltage beam faster than with a raster scan, while simultaneously calibrating the observed beam continuously. For short radio holographic observations (60 s and 600 s) of 3C196, 3C147, and 3C48 we are able to derive time delays with errors of less than one nanosecond. After applying the derived time delays to the beamformer, the beam shows residuals of less than $20%$ with respect to the theoretical beam shape. Tied-array holography could be a way towards semi-real-time beam calibration for the Square Kilometer Array.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا