No Arabic abstract
This work is devoted to averaging principle of a two-time-scale stochastic partial differential equation on a bounded interval $[0, l]$, where both the fast and slow components are directly perturbed by additive noises. Under some regular conditions on drift coefficients, it is proved that the rate of weak convergence for the slow variable to the averaged dynamics is of order $1-varepsilon$ for arbitrarily small $varepsilon>0$. The proof is based on an asymptotic expansion of solutions to Kolmogorov equations associated with the multiple-time-scale system.
This article deals with the weak errors for averaging principle for a stochastic wave equation in a bounded interval $[0,L]$, perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. Under suitable conditions, it is proved that the rate of weak convergence to the averaged effective dynamics is of order $1$ via an asymptotic expansion approach.
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone coefficients and the fast component is a stochastic partial differential equations (SPDEs) with strongly monotone coefficients. The result is applicable to a large class of examples, such as the stochastic porous medium equation, the stochastic $p$-Laplace equation, the stochastic Burgers type equation and the stochastic 2D Navier-Stokes equation, which are the nonlinear stochastic partial differential equations. The main techniques are based on time discretization and the variational approach to SPDEs.
By using the technique of the Zvonkins transformation and the classical Khasminkiis time discretization method, we prove the averaging principle for slow-fast stochastic partial differential equations with bounded and H{o}lder continuous drift coefficients. An example is also provided to explain our result.
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.
In contrast to existing works on stochastic averaging on finite intervals, we establish an averaging principle on the whole real axis, i.e. the so-called second Bogolyubov theorem, for semilinear stochastic ordinary differential equations in Hilbert space with Poisson stable (in particular, periodic, quasi-periodic, almost periodic, almost automorphic etc) coefficients. Under some appropriate conditions we prove that there exists a unique recurrent solution to the original equation, which possesses the same recurrence property as the coefficients, in a small neighborhood of the stationary solution to the averaged equation, and this recurrent solution converges to the stationary solution of averaged equation uniformly on the whole real axis when the time scale approaches zero.