No Arabic abstract
Weyl fermions in an external magnetic field exhibit the chiral anomaly, a non-conservation of chiral fermions. In a Weyl semimetal, a spatially inhomogeneous Weyl node separation causes similar effect by creating an intrinsic pseudo-magnetic field with an opposite sign for nodes of opposite chirality. In the present work we study the interplay of external and intrinsic fields. In particular, we focus on quantum oscillations due to bulk-boundary trajectories. When caused by an external field, such oscillations are a proven experimental technique to detect Weyl semimetals. We show that the intrinsic field leaves hallmarks on such oscillations by decreasing the period of the oscillations in an analytically traceable manner. The oscillations can thus be used to test the effect of an intrinsic field and to extract its strength.
The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principle calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g. NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar.
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fertile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe$_2$, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points.
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.
We present how to detect type-$1$ Weyl nodes in a material by inelastic neutron scattering. Such an experiment first of all allows one to determine the dispersion of the Weyl fermions. We extend the reasoning to produce a quantitative test of the Weyl equation taking into account realistic anisotropic properties. These anisotropies are mostly contained in the form of the emergent magnetic moment of the excitations, which determines how they couple to the neutron. Although there are many material parameters, we find several quantitative predictions that are universal and demonstrate that the excitations are described by solutions to the Weyl equation. The realistic, anisotropic coupling between electrons and neutrons implies that even fully unpolarized neutrons can reveal the spin-momentum locking of the Weyl fermions because the neutrons will couple to some components of the Weyl fermion pseudospin more strongly. On the other hand, in an experiment with polarized neutrons, the scattered neutron beam remains fully polarized in a direction that varies as a function of momentum transfer (within the range of validity of the Weyl equation). This allows measurement of the chirality of Weyl fermions for inversion symmetric nodes. Furthermore, we estimate that the scattering rate may be large enough for such experiments to be practical; in particular, the magnetic moment may be larger than the ordinary Bohr magneton, compensating for a small density of states.
Theory of light absorption and circular photocurrent in Weyl semimetals is developed for arbitrary large light intensities with account for both elastic and inelastic relaxation processes of Weyl fermions. The direct optical transition rate is shown to saturate at large intensity, and the saturation behaviour depends on the light polarization and on the ratio of the elastic and inelastic relaxation times. The linear-circular dichroism in absorption is shown to exceed 10~% at intermediate light wave amplitudes and fast energy relaxation. At large intensity $I$, the light absorption coefficient drops as $1/sqrt{I}$, and the circular photogalvanic current increases as $sqrt{I}$.