Do you want to publish a course? Click here

Collective power: Minimal model for thermodynamics of nonequilibrium phase transitions

68   0   0.0 ( 0 )
 Added by Tim Herpich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a thermodynamically consistent minimal model to study synchronization which is made of driven and interacting three-state units. This system exhibits at the mean-field level two bifurcations separating three dynamical phases: a single stable fixed point, a stable limit cycle indicative of synchronization, and multiple stable fixed points. These complex emergent dynamical behaviors are understood at the level of the underlying linear Markovian dynamics in terms of metastability, i.e. the appearance of gaps in the upper real part of the spectrum of the Markov generator. Stochastic thermodynamics is used to study the dissipated work across dynamical phases as well as across scales. This dissipated work is found to be reduced by the attractive interactions between the units and to nontrivially depend on the system size. When operating as a work-to-work converter, we find that the maximum power output is achieved far-from-equilibrium in the synchronization regime and that the efficiency at maximum power is surprisingly close to the linear regime prediction. Our work shows the way towards building a thermodynamics of nonequilibrium phase transitions in conjunction to bifurcation theory.



rate research

Read More

Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the the average current, the situation is much less understood for higher statistics. In this paper, we address the consequences of the diverging metastability lifetime -- a hallmark of discontinuous transitions -- in the fluctuations of arbitrary thermodynamic currents, including the entropy production. In particular, we center our discussion on the emph{conditional} statistics, given which phase the system is in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among other predictions, their connection to average and scaled variance through a finite-time version of Large Deviation Theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous transitions: Schlogls model of chemical reactions, and a $12$-states Potts model subject to two baths at different temperatures.
Self-supervised learning (SSL) of energy based models has an intuitive relation to equilibrium thermodynamics because the softmax layer, mapping energies to probabilities, is a Gibbs distribution. However, in what way SSL is a thermodynamic process? We show that some SSL paradigms behave as a thermodynamic composite system formed by representations and self-labels in contact with a nonequilibrium reservoir. Moreover, this system is subjected to usual thermodynamic cycles, such as adiabatic expansion and isochoric heating, resulting in a generalized Gibbs ensemble (GGE). In this picture, we show that learning is seen as a demon that operates in cycles using feedback measurements to extract negative work from the system. As applications, we examine some SSL algorithms using this idea.
116 - Dominik Lips , Artem Ryabov , 2020
Driven diffusive systems constitute paradigmatic models of nonequilibrium physics. Among them, a driven lattice gas known as the asymmetric simple exclusion process (ASEP) is the most prominent example for which many intriguing exact results have been obtained. After summarizing key findings, including the mapping of the ASEP to quantum spin chains, we discuss the recently introduced Brownian asymmetric simple exclusion process (BASEP) as a related class of driven diffusive system with continuous space dynamics. In the BASEP, driven Brownian motion of hardcore-interacting particles through one-dimensional periodic potentials is considered. We study whether current-density relations of the BASEP can be considered as generic for arbitrary periodic potentials and whether repulsive particle interactions other than hardcore lead to similar results. Our findings suggest that shapes of current-density relations are generic for single-well periodic potentials and can always be attributed to the interplay of a barrier reduction, blocking and exchange symmetry effect. This implies that in general up to five different phases of nonequilibrium steady states are possible for such potentials. The phases can occur in systems coupled to particle reservoirs, where the bulk density is the order parameter. For multiple-well periodic potentials, more complex current-density relations are possible and more phases can appear. Taking a repulsive Yukawa potential as an example, we show that the effects of barrier reduction and blocking on the current are also present. The exchange symmetry effect requires hardcore interactions and we demonstrate that it can still be identified when hardcore interactions are combined with weak Yukawa interactions.
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second, the definition of entropy production rate which is nonnegative and vanishes in thermodynamic equilibrium. Based on these assumptions we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium, and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasi-equilibrium processes, the convexity of the equilibrium surface, the monotonic time behavior of thermodynamic potentials, including entropy, the bilinear form of the entropy production rate, the Onsager coefficients and reciprocal relations, and the nonequilibrium steady states of chemical reactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا