No Arabic abstract
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
Notes of the lectures delivered in Les Houches during the Summer School on Complex Systems (July 2006).
We develop a Landau like theory to characterize the phase transitions in resetting systems. Restart can either accelerate or hinder the completion of a first passage process. The transition between these two phases is characterized by the behavioral change in the order parameter of the system namely the optimal restart rate. Like in the original theory of Landau, the optimal restart rate can undergo a first or second order transition depending on the details of the system. Nonetheless, there exists no unified framework which can capture the onset of such novel phenomena. We unravel this in a comprehensive manner and show how the transition can be understood by analyzing the first passage time moments. Power of our approach is demonstrated in two canonical paradigm setup namely the Michaelis Menten chemical reaction and diffusion under restart.
In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids (e.g. spinodal decomposition). The granular fluid, which is usually modeled as a fluid of inelastic hard spheres (IHS), exhibits two instabilities: the spontaneous formation of vortices and of high density clusters. We suppress the clustering instability by imposing constraints on the system sizes, in order to illustrate how LG-equations can be derived for the order parameter, being the rate of deformation or shear rate tensor, which controls the formation of vortex patterns. From the shape of the energy functional we obtain the stationary patterns in the flow field. Quantitative predictions of this theory for the stationary states agree well with molecular dynamics simulations of a fluid of inelastic hard disks.
The phase diagram of the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XXZ chain was obtained by Haldane using bosonization techniques. It supports three distinct phases for $0leq J^{,}_{2}/J^{,}_{1}<1/2$, i.e., a gapless algebraic spin liquid phase, a gapped long-range ordered Neel phase, and a gapped long-range ordered dimer phase. Even though the Neel and dimer phases are not related hierarchically by a pattern of symmetry breaking, it was shown that they meet along a line of quantum critical points with a U(1) symmetry and central charge $c=1$. Here, we extend the analysis made by Haldane on the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XYZ chain using both bosonization and numerical techniques. We show that there are three Neel phases and the dimer phase that are separated from each other by six planes of phase boundaries realizing U(1) criticality when $0leq J^{,}_{2}/J^{,}_{1}<1/2$. We also show that each long-range ordered phase harbors topological point defects (domain walls) that are dual to those across the phase boundary in that a defect in one ordered phase locally binds the other type of order around its core. By using the bosonization approach, we identify the critical theory that describes simultaneous proliferation of these dual point defects, and show that it supports an emergent U(1) symmetry that originates from the discrete symmetries of the XYZ model. To confirm this numerically, we perform DMRG calculation and show that the critical theory is characterized by the central charge $c=1$ with critical exponents that are consistent with those obtained from the bosonization approach. Furthermore, we generalize the field theoretic description of direct continuous phase transition to higher dimensions, especially in $d=3$, by using a non-linear sigma model (NLSM) with a topological term.
Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the the average current, the situation is much less understood for higher statistics. In this paper, we address the consequences of the diverging metastability lifetime -- a hallmark of discontinuous transitions -- in the fluctuations of arbitrary thermodynamic currents, including the entropy production. In particular, we center our discussion on the emph{conditional} statistics, given which phase the system is in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among other predictions, their connection to average and scaled variance through a finite-time version of Large Deviation Theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous transitions: Schlogls model of chemical reactions, and a $12$-states Potts model subject to two baths at different temperatures.