Do you want to publish a course? Click here

Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth

49   0   0.0 ( 0 )
 Added by Ilya Chertok
 Publication date 2018
  fields Physics
and research's language is English
 Authors I. M. Chertok




Ask ChatGPT about the research

In this note, we consider radio characteristics of three proton flares that caused discrete enhancements of solar energetic particles (SEPs) near Earth. The analysis confirmed that the flux density and frequency spectrum of microwave bursts, although the latter are generated by electrons propagating to the photosphere, reflect the number and energy spectrum of accelerated particles, including the 10-100 MeV protons coming to Earth.



rate research

Read More

54 - V.V. Grechnev 2015
We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years, on the one hand, and solar proton events, on the other hand (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013a). Here we address the relations between the microwave fluences at 35 GHz and near-Earth proton fluences above 100 MeV in order to find information on their sources and evaluate their diagnostic potential. A correlation was found to be pronouncedly higher between the microwave and proton fluences than between their peak fluxes. This fact probably reflects a dependence of the total number of protons on the duration of the acceleration process. In events with strong flares, the correlation coefficients of high-energy proton fluences with microwave and soft X-ray fluences are higher than those with the speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to high-energy proton fluxes. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution is probable and possibly prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux, duration, and fluence of the 35 GHz burst, while the role of the Big Flare Syndrome might be overestimated previously. Empirical diagnostic relations are proposed.
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated with an erupting flux rope. This event is also well-covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in hard X-rays (HXRs). We present an overview of this event focusing on microwave and HXR data, both associated with high-energy nonthermal electrons, and discuss them within the context of the flare geometry and evolution revealed by extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA). The EOVSA and RHESSI data reveal the evolving spatial and energy distribution of high-energy electrons throughout the entire flaring region. The results suggest that the microwave and HXR sources largely arise from a common nonthermal electron population, although the microwave imaging spectroscopy provides information over a much larger volume of the corona.
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we study the late-stage evolution of the flare dynamics and topology, comparing signatures of reconnection with those expected from the standard solar flare model. Examining previously unpublished EIS data, we present the evolution of non-thermal velocity and temperature within the famous plasma sheet structure, for the first four hours of the flares duration. On even longer time scales, we use Differential Emission Measures and polarization data to study the longevity of the flares plasma sheet and cusp structure, discovering that the plasma sheet is still visible in CoMP linear polarization observations on 2017 September 11, long after its last appearance in EUV. We deduce that magnetic reconnection of some form is still ongoing at this time - 27 hours after flare onset.
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region 12673 that appeared on September 4 and lasted until September 10, 2017, with intensity higher than > M2. In nine of those solar flares, the SEDA-FIB detected clear signals of solar neutrons, along with five minor excesses. Among these events, we focus on two associated with the flares of X2.2 (SOL2017-09-06) and X8.2 (SOL2017-09-10) that share a common feature: a process of accelerating electrons into high energies as clearly recorded by the FERMI-GBM detector. These events may provide us with useful information to elucidate the ion acceleration process. The X8.2 event was a limb flare that proved adequate for fixing the parameters needed to explain the process of particle acceleration into high energies. According to our analysis, the electron acceleration process may possibly be explained by the shock acceleration model. However, we found that it would be difficult to explain the simultaneous acceleration of ions with electrons, unless the ions were preheated prior to their rapid acceleration.
We study the magnetic field evolution in the active region (AR) 12673 that produced the largest solar flare in the past decade on 2017 September 6. Fast flux emergence is one of the most prominent features of this AR. We calculate the magnetic helicity from photospheric tangential flows that shear and braid field lines (shear-helicity), and from normal flows that advect twisted magnetic flux into the corona (emergence-helicity), respectively. Our results show that the emergence-helicity accumulated in the corona is $-1.6times10^{43}~Mx^2$ before the major eruption, while the shear-helicity accumulated in the corona is $-6times10^{43}~Mx^2$, which contributes about 79% of the total helicity. The shear-helicity flux is dominant throughout the overall investigated emergence phase. Our results imply that the emerged fields initially contain relatively low helicity. Much more helicity is built up by shearing and converging flows acting on preexisted and emerging flux. Shearing motions are getting stronger with the flux emergence, and especially on both sides of the polarity inversion line of the core field region. The evolution of the vertical currents shows that most of the intense currents do not appear initially with the emergence of the flux, which implies that most of the emerging flux is probably not strongly current-carrying. The helical magnetic fields (flux rope) in the core field region are probably formed by long-term photospheric motions. The shearing and converging motions are continuously generated driven by the flux emergence. AR 12673 is a representative as photospheric motions contribute most of the nonpotentiality in the AR with vigorous flux emergence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا