No Arabic abstract
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region 12673 that appeared on September 4 and lasted until September 10, 2017, with intensity higher than > M2. In nine of those solar flares, the SEDA-FIB detected clear signals of solar neutrons, along with five minor excesses. Among these events, we focus on two associated with the flares of X2.2 (SOL2017-09-06) and X8.2 (SOL2017-09-10) that share a common feature: a process of accelerating electrons into high energies as clearly recorded by the FERMI-GBM detector. These events may provide us with useful information to elucidate the ion acceleration process. The X8.2 event was a limb flare that proved adequate for fixing the parameters needed to explain the process of particle acceleration into high energies. According to our analysis, the electron acceleration process may possibly be explained by the shock acceleration model. However, we found that it would be difficult to explain the simultaneous acceleration of ions with electrons, unless the ions were preheated prior to their rapid acceleration.
At the 33rd ICRC, we reported the possible detection of solar gamma rays by a ground level detector and later re-examined this event. On March 7, 2011, the solar neutron telescope (SNT) located at Mt. Sierra Negra, Mexico (4,600 m) observed enhancements of the counting rate from 19:49 to 20:02 UT and from 20:50 to 21:01 UT. The statistical significance was 9.7sigma and 8.5sigma, respectively. This paper discusses the possibility of using this mountain detector to detect solar gamma rays. In association with this event, the solar neutron detector SEDA-FIB onboard the International Space Station has also detected solar neutrons with a statistical significance of 7.5sigma. The FERMI-LAT detector also observed high-energy gamma rays from this flare with a statistical significance of 6.7sigma. We thus attempted to make a unified model to explain this data. In this paper, we report on another candidate for solar gamma rays detected on September 25th, 2011 by the SNT located in Tibet (4,300 m) from 04:37 to 04:47 UT with a statistical significance of 8.0sigma (by the Li-Ma method).
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we study the late-stage evolution of the flare dynamics and topology, comparing signatures of reconnection with those expected from the standard solar flare model. Examining previously unpublished EIS data, we present the evolution of non-thermal velocity and temperature within the famous plasma sheet structure, for the first four hours of the flares duration. On even longer time scales, we use Differential Emission Measures and polarization data to study the longevity of the flares plasma sheet and cusp structure, discovering that the plasma sheet is still visible in CoMP linear polarization observations on 2017 September 11, long after its last appearance in EUV. We deduce that magnetic reconnection of some form is still ongoing at this time - 27 hours after flare onset.
The Fermi-Large Area Telescope (LAT) detection of the X8.2 GOES class solar flare of 2017 September 10 provides for the first time observations of a long duration high-energy gamma-ray flare associated with a Ground Level Enhancement (GLE). The >100 MeV emission from this flare lasted for more than 12 hours covering both the impulsive and extended phase. We present the localization of the gamma-ray emission and find that it is consistent with the active region (AR) from which the flare occurred over a period lasting more than 6 hours contrary to what was found for the 2012 March 7 flares. The temporal variation of the proton index inferred from the gamma-ray data seems to suggest two phases in acceleration of the proton population. Based on timing arguments we interpret the second phase to be tied to the acceleration mechanism powering the GLE, believed to be particle acceleration at a coronal shock driven by the CME.
We reported a photon detection at the arrival time of the gravitational wave on December 26th, 2015. According to the LIGO-Virgo collaboration, the gravitational wave was produced by the merging process of the two black holes. The merged time was determined at 03:38:53.6 UT on December 26th. At 03:38:54.05 GPS time, one of the detectors of SEDA-FIB on board the International Space Station (ISS) detected a photon, arriving from the direction of Corona Australis near the Galactic Bulge (GB). The energy of the photon was about (35+-7) MeV. A 3.0 sigma level detection of the photon is discussed.
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated with an erupting flux rope. This event is also well-covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in hard X-rays (HXRs). We present an overview of this event focusing on microwave and HXR data, both associated with high-energy nonthermal electrons, and discuss them within the context of the flare geometry and evolution revealed by extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA). The EOVSA and RHESSI data reveal the evolving spatial and energy distribution of high-energy electrons throughout the entire flaring region. The results suggest that the microwave and HXR sources largely arise from a common nonthermal electron population, although the microwave imaging spectroscopy provides information over a much larger volume of the corona.