Do you want to publish a course? Click here

Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety

88   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus clusters brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. We present new observations of the low-velocity component of this nebula with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view ($sim$11$times$11), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc$times$55 kpc (3.8$times$2.6) large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]$lambda$6583/$text{H} alpha$ line ratio, suggesting a change in the ionization mechanism and source across the nebula, while the dispersion profile shows a general decrease with increasing distance from the AGN at up to $sim 10$ kpc. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus are also explored.



rate research

Read More

NGC 1275 is one of the most conspicuous active galactic nuclei (AGN) in the local Universe. The radio jet currently emits a flux density of $sim 10$ Jy at $sim 1$ mm wavelengths, down from the historic high of $sim 65$ Jy in 1980. Yet, the nature of the AGN in NGC 1275 is still controversial. It has been debated whether this is a broad emission line (BEL) Seyfert galaxy, an obscured Seyfert galaxy, a narrow line radio galaxy or a BL-Lac object. We clearly demonstrate a persistent H$beta$ BEL over the last 35 years with a full width half maximum (FWHM) of 4150 - 6000 km/s. We also find a prominent P$alpha$ BEL (FWHM $approx 4770 $ km/s) and a weak CIV BEL (FWHM $approx 4000 $ km/s), H$beta$/CIV $approx 2$. A far UV HST observation during suppressed jet activity reveals a low luminosity continuum. The H$beta$ BEL luminosity is typical of broad line Seyfert galaxies with similar far UV luminosity. X-ray observations indicate a softer ionizing continuum than expected for a broad line Seyfert galaxy with similar far UV luminosity. This is opposite of the expectation of advection dominated accretion. The AGN continuum appears to be thermal emission from a low luminosity, optically thick, accretion flow with a low Eddington ratio, $sim 0.0001$. The soft, weak ionizing continuum is consistent with the relatively weak CIV BEL. Evidence that the BEL luminosity is correlated with the jet mm wave luminosity is presented. Apparently, the accretion rate regulates jet power.
53 - Enci Wang , Jing Wang , Xu Kong 2017
In this paper, we report the peculiar HI morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly parallel to its major axis. This filament is made up of several HI clouds and the diffuse HI gas between them, with no optical counterparts. We compare its HI distribution with other one-sided HI distributions in the literature, and find that the overall HI distribution is very different from the typical tidal and ram-pressure stripped HI shape, and its morphology is inconsistent with being a pure accretion event. Only about 30% of the total HI gas is anchored on the stellar disk, while most of HI gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission, whose axis points to an HI gap in NGC 6145. The velocity of the HI filament shows an overall light-of- sight motion of 80 to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure stripping is not likely to produce the observed HI filament. An alternative explanation is the jet-stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.
Charge exchange emission is known to provide a key diagnostic to the interface between hot and cold matter in many astrophysical environments. Most of the recent charge exchange studies focus on its emission in the X-ray band, but few on the UV part, although the latter can also provide a powerful probe of the charge exchange process. An atomic calculation, as well as an application to observed data, are presented to explore and describe the potential use of the UV data for the study of cosmic charge exchange. Using the newest charge exchange model in the SPEX code v3.03, we re-analyze an archival Hubble STIS data of the central region of NGC 1275. The NGC 1275 spectrum shows hints for three possible weak lines at about 1223.6~{AA}, 1242.4~{AA}, and 1244.0~{AA}, each with a significance of about $2-3sigma$. The putative features are best explained by charge exchange between highly ionized hydrogen, neon, and sulfur with neutral matter. The wavelengths of the charge exchange lines are found robustly with uncertainties $leq 0.3$~{AA}. The possible charge exchange emission shows a line-of-sight velocity offset of about $-3400$ km s$^{-1}$ with respect to the NGC 1275 nucleus, which resembles one of the Ly$alpha$ absorbers reported in Baum et al. (2005). This indicates that the charge exchange lines might be emitted as the same position of the absorber, which could be ascribed to outflowing gas from the nucleus.
We use APEX mapping observations of 13CO, and C18O (2-1) to investigate the internal gas kinematics of the filamentary cloud G350.54+0.69, composed of the two distinct filaments G350.5-N and G350.5-S. G350.54+0.69 as a whole is supersonic and gravitationally bound. We find a large-scale periodic velocity oscillation along the entire G350.5-N filament with a wavelength of ~1.3 pc and an amplitude of ~0.12 km/s. Comparing with gravitational-instability induced core formation models, we conjecture that this periodic velocity oscillation could be driven by a combination of longitudinal gravitational instability and a large-scale periodic physical oscillation along the filament. The latter may be an example of an MHD transverse wave. This hypothesis can be tested with Zeeman and dust polarization measurements.
NGC 4490/85 (UGC 7651/48) or Arp 269 is well known for being one of the closest interacting/merging galactic systems. NGC 4490 has a high star formation rate (SFR) and is surrounded by an enormous HI feature stretching about 60 kpc north and south of the optically visible galaxies. Both the driver for the high SFR in NGC 4490 and the formation mechanism of the HI structure are puzzling aspects of this system. We have used mid-infrared Spitzer data to show that NGC 4490 has a double nucleus morphology. One nucleus is visible in the optical, while the other is only visible at infrared and radio wavelengths. We find the optical nucleus and the potential infrared visible nucleus have similar sizes, masses, and luminosities. Both are comparable in mass and luminosity to other nuclei found in interacting galaxy pairs and much more massive and luminous compared with typical non-nuclear star-forming complexes. We examine possible origin scenarios for the infrared feature, and conclude that it is likely that NGC 4490 is itself a merger remnant, which is now interacting with NGC 4485. This earlier encounter provides both a possible driver for extended star formation in NGC 4490, and multiple pathways for the formation of the extended HI plume.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا