The loss and noise mechanisms of superconducting resonators are useful tools for understanding decoherence in superconducting circuits. While the loss mechanisms have been heavily studied, noise in superconducting resonators has only recently been investigated. In particular, there is an absence of literature on noise in the single photon limit. Here, we measure the loss and noise of an aluminium on silicon quarter-wavelength ($lambda/4$) resonator in the single photon regime.
We numerically and experimentally investigate the phononic loss for superconducting resonators fabricated on a piezoelectric substrate. With the help of finite element method simulations, we calculate the energy loss due to electromechanical conversion into bulk and surface acoustic waves. This sets an upper limit for the resonator internal quality factor $Q_i$. To validate the simulation, we fabricate quarter wavelength coplanar waveguide resonators on GaAs and measure $Q_i$ as function of frequency, power and temperature. We observe a linear increase of $Q_i$ with frequency, as predicted by the simulations for a constant electromechanical coupling. Additionally, $Q_i$ shows a weak power dependence and a negligible temperature dependence around 10$,$mK, excluding two level systems and non-equilibrium quasiparticles as the main source of losses at that temperature.
We present measurements of 1/f frequency noise in both linear and Josephson-junction-embedded superconducting aluminum resonators in the low power, low temperature regime - typical operating conditions for superconducting qubits. The addition of the Josephson junction does not result in additional frequency noise, thereby placing an upper limit for fractional critical current fluctuations of $10^{-8}$ (Hz$^{-1/2}$) at 1 Hz for sub-micron, shadow evaporated junctions. These values imply a minimum dephasing time for a superconducting qubit due to critical current noise of 40 -- 1400 $mu$s depending on qubit architecture. Occasionally, at temperatures above 50 mK, we observe the activation of individual fluctuators which increase the level of noise significantly and exhibit Lorentzian spectra.
We present an experimental demonstration as well as a theoretical model of an integrated circuit designed for the manipulation of a microwave field down to the single-photon level. The device is made of a superconducting resonator coupled to a transmission line via a second frequency-tunable resonator. The tunable resonator can be used as a tunable coupler between the fixed resonator and the transmission line. Moreover, the manipulation of the microwave field between the two resonators is possible. In particular, we demonstrate the swapping of the field from one resonator to the other by pulsing the frequency detuning between the two resonators. The behavior of the system, which determines how the device can be operated, is analyzed as a function of one key parameter of the system, the damping ratio of the coupled resonators. We show a good agreement between experiments and simulations, realized by solving a set of coupled differential equations.
We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device (SQUID). We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 {mu}s when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of $4 mu s$.
Jonathan Burnett
,Andreas Bengtsson
,David Niepce
.
(2018)
.
"Noise and loss of superconducting aluminium resonators at single photon energies"
.
Jonathan Burnett J
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا