Do you want to publish a course? Click here

Crowd Behavior Simulation with Emotional Contagion in Unexpected Multi-hazard Situations

366   0   0.0 ( 0 )
 Added by Mingliang Xu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we present a novel crowd simulation method by modeling the generation and contagion of panic emotion under multi-hazard circumstances. Specifically, we first classify hazards into different types (transient and persistent, concurrent and non-concurrent, static and dynamic ) based on their inherent characteristics. Then, we introduce the concept of perilous field for each hazard and further transform the critical level of the field to its invoked-panic emotion. After that, we propose an emotional contagion model to simulate the evolving process of panic emotion caused by multiple hazards in these situations. Finally, we introduce an Emotional Reciprocal Velocity Obstacles (ERVO) model to simulate the crowd behaviors by augmenting the traditional RVO model with emotional contagion, which combines the emotional impact and local avoidance together for the first time. Our experimental results show that this method can soundly generate realistic group behaviors as well as panic emotion dynamics in a crowd in multi-hazard environments.



rate research

Read More

Antagonistic crowd behaviors are often observed in cases of serious conflict. Antagonistic emotions, which is the typical psychological state of agents in different roles (i.e. cops, activists, and civilians) in crowd violent scenes, and the way they spread through contagion in a crowd are important causes of crowd antagonistic behaviors. Moreover, games, which refers to the interaction between opposing groups adopting different strategies to obtain higher benefits and less casualties, determine the level of crowd violence. We present an antagonistic crowd simulation model, ACSEE, which is integrated with antagonistic emotional contagion and evolutionary game theories. Our approach models the antagonistic emotions between agents in different roles using two components: mental emotion and external emotion. We combine enhanced susceptible-infectious-susceptible (SIS) and game approaches to evaluate the role of antagonistic emotional contagion in crowd violence. Our evolutionary game theoretic approach incorporates antagonistic emotional contagion through deterrent force, which is modelled by a mixture of emotional forces and physical forces defeating the opponents. Antagonistic emotional contagion and evolutionary game theories influence each other to determine antagonistic crowd behaviors. We evaluate our approach on real-world scenarios consisting of different kinds of agents. We also compare the simulated crowd behaviors with real-world crowd videos and use our approach to predict the trends of crowd movements in violence incidents. We investigate the impact of various factors (number of agents, emotion, strategy, etc.) on the outcome of crowd violence. We present results from user studies suggesting that our model can simulate antagonistic crowd behaviors similar to those seen in real-world scenarios.
Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds.
102 - W. Sikora , J. Malinowski 2011
The evacuation of football stadium scenarios are discussed as model realizing ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which the set of basic vectors of irreducible representation of given group is. The speeds of individuals at every point in the presented model have the same quantity. As the results the times of evacuation and average forces acting on individuals during the evacuation are given. Both parameters are compared with the same parameters got without symmetry considerations. They are calculated in the simulation procedure. The new program (using modified Helbing model) has been elaborated and presented in this work for realization the simulation tasks the.
100 - Pei Lv , Boya Xu , Chaochao Li 2021
The antagonistic behavior of the crowd often exacerbates the seriousness of the situation in sudden riots, where the spreading of antagonistic emotion and behavioral decision making in the crowd play very important roles. However, the mechanism of complex emotion influencing decision making, especially in the environment of sudden confrontation, has not yet been explored clearly. In this paper, we propose one new antagonistic crowd simulation model by combing emotional contagion and deep reinforcement learning (ACSED). Firstly, we build a group emotional contagion model based on the improved SIS contagion disease model, and estimate the emotional state of the group at each time step during the simulation. Then, the tendency of group antagonistic behavior is modeled based on Deep Q Network (DQN), where the agent can learn the combat behavior autonomously, and leverages the mean field theory to quickly calculate the influence of other surrounding individuals on the central one. Finally, the rationality of the predicted behaviors by the DQN is further analyzed in combination with group emotion, and the final combat behavior of the agent is determined. The method proposed in this paper is verified through several different settings of experiments. The results prove that emotions have a vital impact on the group combat, and positive emotional states are more conducive to combat. Moreover, by comparing the simulation results with real scenes, the feasibility of the method is further verified, which can provide good reference for formulating battle plans and improving the winning rate of righteous groups battles in a variety of situations.
Trajectory interpolation, the process of filling-in the gaps and removing noise from observed agent trajectories, is an essential task for the motion inference in multi-agent setting. A desired trajectory interpolation method should be robust to noise, changes in environments or agent densities, while also being yielding realistic group movement behaviors. Such realistic behaviors are, however, challenging to model as they require avoidance of agent-agent or agent-environment collisions and, at the same time, seek computational efficiency. In this paper, we propose a novel framework composed of data-driven priors (local, global or combined) and an efficient optimization strategy for multi-agent trajectory interpolation. The data-driven priors implicitly encode the dependencies of movements of multiple agents and the collision-avoiding desiderata, enabling elimination of costly pairwise collision constraints and resulting in reduced computational complexity and often improved estimation. Various combinations of priors and optimization algorithms are evaluated in comprehensive simulated experiments. Our experimental results reveal important insights, including the significance of the global flow prior and the lesser-than-expected influence of data-driven collision priors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا