Do you want to publish a course? Click here

The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos

122   0   0.0 ( 0 )
 Added by Omid Sameie
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.



rate research

Read More

130 - T. K. Chan 2015
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for $M_{ast}sim10^{4-11},M_{odot}$ galaxies in $M_{rm h}sim10^{9-12},M_{odot}$ halos. FIRE incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without fine-tuned parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile ($alpha$) shows a strong mass dependence: profiles are shallow at $M_{rm h}sim10^{10}-10^{11},M_{odot}$ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of $alpha$, and relatively late growth of cores. Because the star formation efficiency $M_{ast}/M_{rm h}$ is strongly halo mass dependent, a rapid change in $alpha$ occurs around $M_{rm h}sim 10^{10},M_{odot}$ ($M_{ast}sim10^{6}-10^{7},M_{odot}$), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the Too Big To Fail problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.
We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift $z=0$. The haloes are drawn from the IllustrisTNG project, a suite of magneto-hydrodynamic simulations of galaxies. We focus on haloes of mass $10^{10-14} M_odot$ from the 50-Mpc (TNG50) and 100-Mpc (TNG100) boxes, and compare them to dark matter-only (DMO) analogues and other simulations e.g. NIHAO and Eagle. We further quantify the prediction uncertainty by varying the baryonic feedback models in a series of smaller 25 Mpc $h^{-1}$ boxes. We find that: (i) galaxy formation results in rounder haloes compared to the DMO simulations, in qualitative agreement with past hydrodynamic models. Haloes of mass $approx 2times 10^{12} M_odot$ are most spherical, with an average minor-to-major axis ratio of $left< s right> approx 0.75$ in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant change in halo shape is found for low-mass $10^{10} M_odot$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, which can explain the dependence of halo shapes on different feedback models; (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. Yet, at fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner halo shapes that are closer to one another than to the DMO results. This implies that a larger observational sample would be required to statistically distinguish between different baryonic prescriptions due to large halo-to-halo variation in halo shapes.
Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section $sigma/m$. We compare the shape of the main dark matter (DM) halo at redshift $z=0$ predicted by SIDM simulations (at $sigma/m=0.1$, $1$, and $10$ cm$^2$ g$^{-1}$) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on $sigma/m$. This transition could potentially be used to set limits on the SIDM cross-section in the MW.
The formation and evolution of galaxies is known to be sensitive to tidal processes leading to intrinsic correlations between their shapes and orientations. Such correlations can be measured to high significance today, suggesting that cosmological information can be extracted from them. Among the most pressing questions in particle physics and cosmology is the nature of dark matter. If dark matter is self-interacting, it can leave an imprint on galaxy shapes. In this work, we investigate whether self-interactions can produce a long-lasting imprint on intrinsic galaxy shape correlations. We investigate this observable at low redshift ($z<0.4$) using a state-of-the-art suite of cosmological hydro-dynamical simulations where the dark matter model is varied. We find that dark matter self-interactions induce a mass dependent suppression in the intrinsic alignment signal by up to 50% out to tens of mega-parsecs, showing that self-interactions can impact structure outside the very core of clusters. We find evidence that self-interactions have a scale-dependent impact on the intrinsic alignment signal that is sufficiently different from signatures introduced by differing baryonic physics prescriptions, suggesting that it is detectable with up-coming all-sky surveys.
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences in these occupation functions. The main effect with environment is that central galaxies (and in one model also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass -- halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the satellite galaxies occupation where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations also in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy catalogs. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical models of assembly bias and attempts to detect it in the real universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا