Do you want to publish a course? Click here

DeepSIC: Deep Semantic Image Compression

92   0   0.0 ( 0 )
 Added by Sihui Luo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Incorporating semantic information into the codecs during image compression can significantly reduce the repetitive computation of fundamental semantic analysis (such as object recognition) in client-side applications. The same practice also enable the compressed code to carry the image semantic information during storage and transmission. In this paper, we propose a concept called Deep Semantic Image Compression (DeepSIC) and put forward two novel architectures that aim to reconstruct the compressed image and generate corresponding semantic representations at the same time. The first architecture performs semantic analysis in the encoding process by reserving a portion of the bits from the compressed code to store the semantic representations. The second performs semantic analysis in the decoding step with the feature maps that are embedded in the compressed code. In both architectures, the feature maps are shared by the compression and the semantic analytics modules. To validate our approaches, we conduct experiments on the publicly available benchmarking datasets and achieve promising results. We also provide a thorough analysis of the advantages and disadvantages of the proposed technique.



rate research

Read More

Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state-of-the-art in image compression. The key challenge in learning such networks is twofold: To deal with quantization, and to control the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the latter challenge and propose a new technique to navigate the rate-distortion trade-off for an image compression auto-encoder. The main idea is to directly model the entropy of the latent representation by using a context model: A 3D-CNN which learns a conditional probability model of the latent distribution of the auto-encoder. During training, the auto-encoder makes use of the context model to estimate the entropy of its representation, and the context model is concurrently updated to learn the dependencies between the symbols in the latent representation. Our experiments show that this approach, when measured in MS-SSIM, yields a state-of-the-art image compression system based on a simple convolutional auto-encoder.
In this paper, we propose a scalable image compression scheme, including the base layer for feature representation and enhancement layer for texture representation. More specifically, the base layer is designed as the deep learning feature for analysis purpose, and it can also be converted to the fine structure with deep feature reconstruction. The enhancement layer, which serves to compress the residuals between the input image and the signals generated from the base layer, aims to faithfully reconstruct the input texture. The proposed scheme can feasibly inherit the advantages of both compress-then-analyze and analyze-then-compress schemes in surveillance applications. The performance of this framework is validated with facial images, and the conducted experiments provide useful evidences to show that the proposed framework can achieve better rate-accuracy and rate-distortion performance over conventional image compression schemes.
Motivated by recent work on deep neural network (DNN)-based image compression methods showing potential improvements in image quality, savings in storage, and bandwidth reduction, we propose to perform image understanding tasks such as classification and segmentation directly on the compressed representations produced by these compression methods. Since the encoders and decoders in DNN-based compression methods are neural networks with feature-maps as internal representations of the images, we directly integrate these with architectures for image understanding. This bypasses decoding of the compressed representation into RGB space and reduces computational cost. Our study shows that accuracies comparable to networks that operate on compressed RGB images can be achieved while reducing the computational complexity up to $2times$. Furthermore, we show that synergies are obtained by jointly training compression networks with classification networks on the compressed representations, improving image quality, classification accuracy, and segmentation performance. We find that inference from compressed representations is particularly advantageous compared to inference from compressed RGB images for aggressive compression rates.
Deep neural networks represent a powerful class of function approximators that can learn to compress and reconstruct images. Existing image compression algorithms based on neural networks learn quantized representations with a constant spatial bit rate across each image. While entropy coding introduces some spatial variation, traditional codecs have benefited significantly by explicitly adapting the bit rate based on local image complexity and visual saliency. This paper introduces an algorithm that combines deep neural networks with quality-sensitive bit rate adaptation using a tiled network. We demonstrate the importance of spatial context prediction and show improved quantitative (PSNR) and qualitative (subjective rater assessment) results compared to a non-adaptive baseline and a recently published image compression model based on fully-convolutional neural networks.
We present a general technique that performs both artifact removal and image compression. For artifact removal, we input a JPEG image and try to remove its compression artifacts. For compression, we input an image and process its 8 by 8 blocks in a sequence. For each block, we first try to predict its intensities based on previous blocks; then, we store a residual with respect to the input image. Our technique reuses JPEGs legacy compression and decompression routines. Both our artifact removal and our image compression techniques use the same deep network, but with different training weights. Our technique is simple and fast and it significantly improves the performance of artifact removal and image compression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا