Do you want to publish a course? Click here

Quantum Advantage from Sequential-Transformation Contextuality

61   0   0.0 ( 0 )
 Added by Shane Mansfield Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a notion of contextuality for transformations in sequential contexts, distinct from the Bell-Kochen-Specker and Spekkens notions of contextuality. Within a transformation-based model for quantum computation we show that strong sequential-transformation contextuality is necessary and sufficient for deterministic computation of non-linear functions if classical components are restricted to mod2-linearity and matching constraints apply to any underlying ontology. For probabilistic computation, sequential-transformation contextuality is necessary and sufficient for advantage in this task and the degree of advantage quantifiably relates to the degree of contextuality.



rate research

Read More

Non-local Advantage of Quantum Coherence(NAQC) or steerability of local quantum coherence is a strong non-local resource based on coherence complementarity relations. In this work, we provide an upper bound on the number of observers who can independently steer the coherence of the observer in the other wing in a scenario where half of an entangled pair of spin-$frac{1}{2}$ particles is shared between a single observer (Bob) in one wing and several observers (Alices) on the other, who can act sequentially and independently of each other. We consider one-parameter dichotomic POVMs for the Alices and mutually unbiased basis in which Bob measures coherence in case of the maximally entangled bipartite qubit state. We show that not more than two Alices can exhibit NAQC when $l_1$-norm of coherence measure is probed, whereas for two other measures of coherence, only one Alice can reveal NAQC within the same framework.
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible measurements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with $B$ and also with $C$, whereas $B$ and $C$ are incompatible, a measurement of $A$ might yield a different result (indicating that quantum mechanics is contextual) depending upon whether $A$ is measured along with $B$ (the ${A,B}$ context) or with $C$ (the ${A,C}$ context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell noncontextual: the outcome of a particular $A$ measurement when $A$ is measured along with $B$ would have been exactly the same if $A$ had, instead, been measured along with $C$. A different definition, here called `globally (non)contextual refers to whether or not there is (noncontextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well-defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus has a tensor product structure, a fact sometimes overlooked.
We propose and analyze a novel interactive protocol for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies upon the cryptographic hardness of trapdoor claw-free functions (TCFs). Through a surprising connection to Bells inequality, our protocol avoids the need for an adaptive hardcore bit, with essentially no increase in the quantum circuit complexity and no extra cryptographic assumptions. Crucially, this expands the set of compatible TCFs, and we propose two new constructions: one based upon the decisional Diffie-Hellman problem and the other based upon Rabins function, $x^2 bmod N$. We also describe two unique features of our interactive protocol: (i) it allows one to discard so-called garbage bits, thereby removing the need for reversibility in the quantum circuits, and (ii) there exists a natural post-selection scheme, which significantly reduces the fidelity needed to demonstrate quantum advantage. Finally, we design several efficient circuits for $x^2 bmod N$ and describe a blueprint for their implementation on a Rydberg-atom-based quantum computer.
77 - Hippolyte Dourdent 2018
The notion of contextuality, which emerges from a theorem established by Simon Kochen and Ernst Specker (1960-1967) and by John Bell (1964-1966), is certainly one of the most fundamental aspects of quantum weirdness. If it is a questioning on scholastic philosophy and a study of contrafactual logic that led Specker to his demonstration with Kochen, it was a criticism of von Neumanns proof that led John Bell to the result. A misinterpretation of this famous proof will lead them to diametrically opposite conclusions. Over the last decades, remarkable theoretical progresses have been made on the subject in the context of the study of quantum foundations and quantum information. Thus, the graphic generalizations of Cabello-Severini-Winter and Acin-Fritz-Leverrier-Sainz raise the question of the connection between non-locality and contextuality. It is also the case of the sheaf-theoretic approach of Samson Abramsky et al., which also invites us to compare contextuality with the logical structure of certain classical logical paradoxes. Another approach, initiated by Robert Spekkens, generalizes the concept to any type of experimental procedure. This new form of universal contextuality has been raised as a criterion of non-classicality, i.e. of weirdness. It notably led to identify the nature of curious quantum paradoxes involving post-selections and weak measurements. In the light of the fiftieth anniversary of the publication of the Kochen-Specker theorem, this report aims to introduce these results little known to the French scientific public, in the context of an investigation on the nature of the weirdness of quantum physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا