Do you want to publish a course? Click here

Constraints from accretion onto a Tangherlini-Reissner-Nordstrom black hole

168   0   0.0 ( 0 )
 Added by Rong-Jia Yang
 Publication date 2018
  fields Physics
and research's language is English
 Authors Rong-Jia Yang




Ask ChatGPT about the research

We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analytically the critical points, the critical fluid velocity, and the critical sound speed. We lay emphasis on the condition under which the accretion is possible. This condition constrains the ratio of mass to charge in a narrow limit, which is independent of dimension for large dimension. This condition may challenge the validity of the cosmic censorship conjecture since a naked singularity is eventually produced as the magnitude of charge increases compared to the mass of black hole.

rate research

Read More

We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent functions expanded around the effective causal radius $r_*$. From the solutions it is obtained that the uncertainty principle is valid for each energy level of space-time, in the form: $E_n, r_{*,n}=hbar/2$, and the charged mass is discretized and distributed in a finite number of states. The classical RNBH entropy is recovered as the limit case where the number of states is very large, and the RNBH quantum temperature depends on the number of states in the interior of the RNBH. This temperature, depending of the number of states of the RNBH, is related with the Bekeinstein-Hawking (BH) temperature: $T_{BH} leq T_{N} < 2,T_{BH}$.
378 - Lei Jiao , Rong-Jia Yang 2016
We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ($P=rho$) onto a Reissner-Nordstr{o}m black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.
We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordstrom black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency regimes and shown to be in full agreement with a numerical calculation. Our investigation is connected with the recent discussion on the validity of the cosmic censorship conjecture in the quantum realm.
In the present article we study the Inverse Electrodynamics Model. This model is a gauge and parity invariant non-linear Electrodynamics theory, which respects the conformal invariance of standard Electrodynamics. This modified Electrodynamics model, when minimally coupled to General Relativity, is compatible with static and spherically symmetric Reissner-Nordstrom-like black-hole solutions. However, these black-hole solutions present more complex thermodynamic properties than their Reissner-Nordstrom black-hole solutions counterparts in standard Electrodynamics. In particular, in the Inverse Model a new stability region, with both the heat capacity and the free energy negative, arises. Moreover, unlike the scenario in standard Electrodynamics, a sole transition phase is possible for a suitable choice in the set of parameters of these solutions.
We study the instability of a Reissner-Nordstrom-AdS (RNAdS) black hole under perturbations of a massive scalar field coupled to Einstein tensor. Calculating the potential of the scalar perturbations we find that as the strength of the coupling of the scalar to Einstein tensor is increasing, the potential develops a negative well outside the black hole horizon, indicating an instability of the background RNAdS. We then investigate the effect of this coupling on the quasinormal modes. We find that there exists a critical value of the coupling which triggers the instability of the RNAdS. We also find that as the charge of the RNAdS is increased towards its extremal value, the critical value of the derivative coupling is decreased.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا