Do you want to publish a course? Click here

Using N-body simulations to understand the chemo-dynamical evolution of the inner Milky Way

71   0   0.0 ( 0 )
 Added by Albert Bosma
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

I present examples of how chemo-dynamical N-body simulations can help understanding the structure and evolution of the inner Galaxy. Such simulations reproduce the observed links between kinematics, morphology and chemistry in the bar/bulge region and explain them by the self-consistent cohabitation of a number of components. Galactic archaeology, applied to simulation snapshots, explains the sequence in which the stars of the various components were formed. The thick disc stars form earlier than those of the thin disc and in a much shorter time scale. The bar in the thick disc is horizontally thicker than that of the thin disc and has a different vertical morphology. The Galaxys inner disc scalelength is much smaller than what is expected from nearby galaxies of similar stellar mass.



rate research

Read More

The typical methodology for comparing simulated galaxies with observational surveys is usually to apply a spatial selection to the simulation to mimic the region of interest covered by a comparable observational survey sample. In this work we compare this approach with a more sophisticated post-processing in which the observational uncertainties and selection effects (photometric, surface gravity and effective temperature) are taken into account. We compare a `solar neighbourhood analogue region in a model Milky Way-like galaxy simulated with RAMSES-CH with fourth release Gaia-ESO survey data. We find that a simple spatial cut alone is insufficient and that observational uncertainties must be accounted for in the comparison. This is particularly true when the scale of uncertainty is large compared to the dynamic range of the data, e.g. in our comparison, the [Mg/Fe] distribution is affected much more than the more accurately determined [Fe/H] distribution. Despite clear differences in the underlying distributions of elemental abundances between simulation and observation, incorporating scatter to our simulation results to mimic observational uncertainty produces reasonable agreement. The quite complete nature of the Gaia-ESO survey means that the selection function has minimal impact on the distribution of observed age and metal abundances but this would become increasingly more important for surveys with narrower selection functions.
Although originally conceived as primarily an extragalactic survey, the Sloan Digital Sky Survey (SDSS-I), and its extensions SDSS-II and SDSS-III, continue to have a major impact on our understanding of the formation and evolution of our host galaxy, the Milky Way. The sub-survey SEGUE: Sloan Extension for Galactic Exploration and Understanding, executed as part of SDSS-II, obtained some 3500 square degrees of additional ugriz imaging, mostly at lower Galactic latitudes, in order to better sample the disk systems of the Galaxy. Most importantly, it obtained over 240,000 medium-resolution spectra for stars selected to sample Galactocentric distances from 0.5 to 100 kpc. In combination with stellar targets from SDSS-I, and the recently completed SEGUE-2 program, executed as part of SDSS-III, the total sample of SDSS spectroscopy for Galactic stars comprises some 500,000 objects. The development of the SEGUE Stellar Parameter Pipeline has enabled the determination of accurate atmospheric parameter estimates for a large fraction of these stars. Many of the stars in this data set within 5 kpc of the Sun have sufficiently well-measured proper motions to determine their full space motions, permitting examination of the nature of much more distant populations represented by members that are presently passing through the solar neighborhood. Ongoing analyses of these data are being used to draw a much clearer picture of the nature of our galaxy, and to supply targets for detailed high-resolution spectroscopic follow-up with the worlds largest telescopes. Here we discuss a few highlights of recently completed and ongoing investigations with these data.
74 - Tuan Do 2020
The Milky Way nuclear star cluster (MW NSC) has been used as a template to understand the origin and evolution of galactic nuclei and the interaction of nuclear star clusters with supermassive black holes. It is the only nuclear star cluster with a supermassive black hole where we can resolve individual stars to measure their kinematics and metal abundance to reconstruct its formation history. Here, we present results of the first chemo-dynamical model of the inner 1 pc of the MW NSC using metallicity and radial velocity data from the KMOS spectrograph on the Very Large Telescope. We find evidence for two kinematically and chemically distinct components in this region. The majority of the stars belong to a previously known super-solar metallicity component with a rotation axis perpendicular to the Galactic plane. However, we identify a new kinematically distinct sub-solar metallicity component which contains about 7% of the stars and appears to be rotating faster than the main component with a rotation axis that may be misaligned. This second component may be evidence for an infalling star cluster or remnants of a dwarf galaxy, merging with the MW NSC. These measurements show that the combination of chemical abundances with kinematics is a promising method to directly study the MW NSCs origin and evolution.
118 - S. Recchi 2013
In this review I give a summary of the state-of-the-art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions; (ii) the equations to solve; (iii) the star formation process in galaxies; (iv) the initial mass function; (v) the chemical feedback; (vi) the mechanical feedback; (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant for the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.
We use hydrodynamical simulations to construct a new coherent picture for the gas flow in the Central Molecular Zone (CMZ), the region of our Galaxy within $Rleq 500, mathrm{pc}$. We relate connected structures observed in $(l,b,v)$ data cubes of molecular tracers to nuclear spiral arms. These arise naturally in hydrodynamical simulations of barred galaxies, and are similar to those that can be seen in external galaxies such as NGC4303 or NGC1097. We discuss a face-on view of the CMZ including the position of several prominent molecular clouds, such as Sgr B2, the $20,{rm km, s^{-1}}$ and $50,{rm km, s^{-1}}$ clouds, the polar arc, Bania Clump 2 and Sgr C. Our model is also consistent with the larger scale gas flow, up to $Rsimeq 3,rm kpc$, thus providing a consistent picture of the entire Galactic bar region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا