No Arabic abstract
AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 hr orbital period in each band. We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarfs spin period (also known as the beat period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase ~0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching ~30% at an orbital phase ~0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf.
We present our $AstroSat$ soft X-ray observations of a compact binary system, AR Sco, and analysis of its X-ray observations with $Chandra$ that were taken only about a week before the $AstroSat$ observations. An analysis of the soft X-ray ($0.3-2.0$ keV) data limits the modulation of the spin, orbital, or beat periods to less than 0.03 counts s$^{-1}$ or $<$10% of the average count rate. The X-ray flux obtained from both observatories is found to be almost identical (within a few percent) in flux, and about 30% lower than reported from the nine months older observations with $XMM-Newton$. A two-temperature thermal plasma model with the same spectral parameters fit $Chandra$ and $AstroSat$ data very well, and requires very little absorption in the line of sight to the source. The low-temperature component has the same temperature ($sim$1 keV) as reported earlier, but the high-temperature component has a lower temperature of 5.0$^{+0.8}_{-0.7}$ keV as compared to 8.0 keV measured earlier, however, the difference is not statistically significant.
We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population. We obtained A-array observations at 1.5, 4.5, and 7.5 GHz for 18 FR0s from the FR0CAT sample: these are sources at $z<0.05$, unresolved in the FIRST images and spectroscopically classified as low excitation galaxies (LEG). Although we reach an angular resolution of $sim$0.3 arcsec, the majority of the 18 FR0s is still unresolved. Only four objects show extended emission. Six have steep radio spectra, 11 are flat cores, while one shows an inverted spectrum. We find that 1) the ratio between core and total emission in FR0s is $sim$30 times higher than in FRI and 2) FR0s share the same properties with FRIs from the nuclear and host point of view. FR0s differ from FRIs only for the paucity of extended radio emission. Different scenarios were investigated: 1) the possibility that all FR0s are young sources eventually evolving into extended sources is ruled out by the distribution of radio sizes; 2) similarly, a time-dependent scenario, where a variation of accretion or jet launching prevents the formation of large-scales radio structures, appears to be rather implausible due to the large abundance of sub-kpc objects 3) a scenario in which FR0s are produced by mildly relativistic jets is consistent with the data but requires observations of a larger sample to be properly tested.
(Abridged) We present the results from new 15 ks Chandra-ACIS and 4.9 GHz Very Large Array observations of 13 galaxies hosting low luminosity AGN. This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti & Balmaverde (2005, 2006); Balmaverde & Capetti (2006). The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC6985). The new VLA observations improve the spatial resolution by a factor of ten: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as core, power-law or intermediate galaxies. With more than twice the number of power-law and intermediate galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in FRI radio galaxies and the low-luminosity core galaxies. This result highlights the fact that the radio-loud/radio-quiet dichotomy is a function of the host galaxys optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the core and power-law galaxies (Gehans Generalized Wilcoxon test probability p for the two classes being statistically similar is <10^-5), but not in the optical-to-X-ray spectral indices (p=0.25).
We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.
The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new VLA full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size 42 AU (0.35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral-index=+0.46+/-0.05, which combined with the lack of polarization, is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7 from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. (2012) in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.