Do you want to publish a course? Click here

High-resolution VLA observations of FR0 radio galaxies: properties and nature of compact radio sources

144   0   0.0 ( 0 )
 Added by Ranieri Diego Baldi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population. We obtained A-array observations at 1.5, 4.5, and 7.5 GHz for 18 FR0s from the FR0CAT sample: these are sources at $z<0.05$, unresolved in the FIRST images and spectroscopically classified as low excitation galaxies (LEG). Although we reach an angular resolution of $sim$0.3 arcsec, the majority of the 18 FR0s is still unresolved. Only four objects show extended emission. Six have steep radio spectra, 11 are flat cores, while one shows an inverted spectrum. We find that 1) the ratio between core and total emission in FR0s is $sim$30 times higher than in FRI and 2) FR0s share the same properties with FRIs from the nuclear and host point of view. FR0s differ from FRIs only for the paucity of extended radio emission. Different scenarios were investigated: 1) the possibility that all FR0s are young sources eventually evolving into extended sources is ruled out by the distribution of radio sizes; 2) similarly, a time-dependent scenario, where a variation of accretion or jet launching prevents the formation of large-scales radio structures, appears to be rather implausible due to the large abundance of sub-kpc objects 3) a scenario in which FR0s are produced by mildly relativistic jets is consistent with the data but requires observations of a larger sample to be properly tested.



rate research

Read More

We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.
432 - Ranieri D. Baldi 2015
Are the FRI and FRII radio galaxies representative of the radio-loud (RL) AGN population in the local Universe? Recent studies on the local low-luminosity radio sources cast lights on an emerging population of compact radio galaxies which lack extended radio emission. In a pilot JVLA project, we study the high-resolution images of a small but representative sample of this population. The radio maps reveal compact unresolved or slightly resolved radio structures on a scale of 1-3 kpc. We find that these RL AGN live in red massive early-type galaxies, with large black hole masses ($gtrsim$10$^{8}$ M$_{odot}$), and spectroscopically classified as Low Excitation Galaxies, all characteristics typical of FRI radio galaxies which they also share the same nuclear luminosity with. However, they are more core dominated (by a factor of $sim$30) than FRIs and show a clear deficit of extended radio emission. We call these sources FR0 to emphasize their lack of prominent extended radio emission. A posteriori, other compact radio sources found in the literature fulfill the requirements for a FR0 classification. Hence, the emerging FR0 population appears to be the dominant radio class of the local Universe. Considering their properties we speculate on their possible origins and the possible cosmological scenarios they imply.
We explore the low-frequency radio properties of the sources in the Fanaroff-Riley class 0 catalog (FR0CAT) as seen by the LOw Frequency ARray (LOFAR) observations at 150 MHz. This sample includes 104 compact radio active galactic nuclei (AGN) associated with nearby (z<0.05) massive early-type galaxies. Sixty-six FR0CAT sources are in the sky regions observed by LOFAR and all of them are detected, usually showing point-like structures with sizes smaller than 3-6 kpc. However, 12 FR0s present resolved emission of low surface brightness which contributes between 5% and 40% of the total radio power at 150 MHz, usually with a jetted morphology extending between 15 and 50 kpc. No extended emission is detected around the other FR0s, with a typical luminosity limit of 5 x 10$^{22}$ W/Hz over an area of 100 kpc x 100 kpc. The spectral slopes of FR0s between 150 MHz and 1.4 GHz span a broad range (-0.7 < $alpha$ < 0.8) with a median value of $overlinealpha sim 0.1$; 20% of them have a steep spectrum ($alpha$ > 0.5), an indication of the presence of substantial extended emission confined within the spatial resolution limit. The fraction of FR0s showing evidence for the presence of jets, by including both spectral and morphological information, is at least ~40%. This study confirms that FR0s and FRIs can be interpreted as two extremes of a continuous population of jetted sources, with the FR0s representing the low end in size and radio power.
With the aim of exploring the properties of the class of FR0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with z$leq 0.05$, with a radio size $lesssim$ 5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their 1.4-GHz radio luminosities range $10^{38} lesssim u L_{1.4} lesssim 10^{40}$ erg/s. The FR0CAT hosts are mostly (86%) luminous ($-21 gtrsim M_r gtrsim -23$) red early-type galaxies with black hole masses $10^8 lesssim M_{rm BH} lesssim 10^9 M_odot$: similar to the hosts of FRI radio galaxies, but they are on average a factor $sim$1.6 less massive. The number density of FR0CAT sources is $sim$5 times higher than that of FRIs, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR0s with respect to FRIs. An age-size scenario that considers FR0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR0s might be intrinsically different from those of the FRIs, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR0s and FRI/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.
Using the Alternative Data Release of the TIFR GMRT Sky Survey (TGSS), we studied the low-frequency properties of FR0 radio galaxies, the large population of compact radio sources associated with red massive early-type galaxies revealed by surveys at 1.4 GHz. We considered TGSS observations from FR0CAT, a sample formed by 104 FR0s at z<0.05: all but one of them are covered by the TGSS, and 43 of them are detected above a 5 sigma limit of 17.5 mJy. No extended emission has been detected around the FR0s, corresponding to a luminosity limit of < 4 10^23 W/Hz over an area of 100 kpc x 100 kpc. All but eight FR0s have a flat or inverted spectral shape (alpha < 0.5) between 150 MHz and 1.4 GHz: this spectral behavior confirms the general paucity of optically thin extended emission within the TGSS beam, as is expected for their compact 1.4 GHz morphology. Data at 5 GHz were used to build their radio spectra, which are also generally flat at higher frequencies. By focusing on a sub-sample of FR0s with flux density > 50 mJy at 1.4 GHz, we found that ~75% of them have a convex spectrum, but with a smaller curvature than the more powerful gigahertz peaked-spectrum sources (GPS). The typical FR0s radio spectrum is better described by a gradual steepening toward high frequencies, rather than to a transition from an optically-thick to an optically-thin regime, possibly observed in only ~15% of the sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا