We investigate the connection problem for the Jackson integral of type $A_n$. Our connection formula implies a Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific multiple series. Introducing certain elliptic Lagrange interpolation functions, we determine the explicit form of the connection coefficients. We also use basic properties of the interpolation functions to establish an explicit determinant formula for a fundamental solution matrix of the associated system of $q$-difference equations.
The connection formula for the Jackson integral of type $BC_n$ is obtained in the form of a Sears--Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific bilateral multiple series. The coefficients of this expansion are expressed by certain elliptic Lagrange interpolation functions. Analyzing basic properties of the elliptic Lagrange interpolation functions, an explicit determinant formula is provided for a fundamental solution matrix of the associated system of $q$-difference equations.
The evaluation formula for an elliptic beta integral of type $G_2$ is proved. The integral is expressed by a product of Ruijsenaars elliptic gamma functions, and the formula includes that of Gustafsons $q$-beta integral of type $G_2$ as a special limiting case as $pto 0$. The elliptic beta integral of type $BC_1$ by van Diejen and Spiridonov is effectively used in the proof of the evaluation formula.
We establish a determinant formula for the bilinear form associated with the elliptic hypergeometric integrals of type $BC_n$ by studying the structure of $q$-difference equations to be satisfied by them. The determinant formula is proved by combining the $q$-difference equations of the determinant and its asymptotic analysis along the singularities. The elliptic interpolation functions of type $BC_n$ are essentially used in the study of the $q$-difference equations.
This note discusses how an operator analog of the Lagrange polynomial naturally arises in the quantum-mechanical problem of constructing an explicit form of the spin projection operator.
We give an alternative proof of an elliptic summation formula of type $BC_n$ by applying the fundamental $BC_n$ invariants to the study of Jackson integrals associated with the summation formula.
Masahiko Ito
,Masatoshi Noumi
.
(2018)
.
"Connection Formula for the Jackson Integral of Type $A_n$ and Elliptic Lagrange Interpolation"
.
Masahiko Ito
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا