Do you want to publish a course? Click here

Probing galaxy assembly bias with LRG weak lensing observations

75   0   0.0 ( 0 )
 Added by Anna Niemiec
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In Montero-Dorta et al. 2017, we show that luminous red galaxies (LRGs) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at $zsim0.55$ can be divided into two groups based on their star formation histories. So-called fast-growing LRGs assemble $80%$ of their stellar mass at $zsim5$, whereas slow-growing LRGs reach the same evolutionary state at $zsim1.5$. We further demonstrate that these two subpopulations present significantly different clustering properties on scales of $sim1 - 30 mathrm{Mpc}$. Here, we measure the mean halo mass of each subsample using the galaxy-galaxy lensing technique, in the $sim190deg^2$ overlap of the LRG catalogue and the CS82 and CFHTLenS shear catalogues. We show that fast- and slow-growing LRGs have similar lensing profiles, which implies that they live in haloes of similar mass: $logleft(M_{rm halo}^{rm fast}/h^{-1}mathrm{M}_{odot}right) = 12.85^{+0.16}_{-0.26}$ and $logleft(M_{rm halo}^{rm slow}/h^{-1}mathrm{M}_{odot}right) =12.92^{+0.16}_{-0.22}$. This result, combined with the clustering difference, suggests the existence of galaxy assembly bias, although the effect is too subtle to be definitively proven given the errors on our current weak-lensing measurement. We show that this can soon be achieved with upcoming surveys like DES.



rate research

Read More

We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of $0.85^{+0.37}_{-0.25}$, which is consistent with the $Lambda$CDM prediction. Our galaxy groups have typical masses of $10^{13} M_{odot}/h$, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.
Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexion add significant detail to the weak lensing measurements. We present here the first detection of a galaxy-galaxy flexion signal in space-based data, obtained using a new Shapelets pipeline introduced here. We combine this higher-order lensing signal with shear to constrain the average density profile of the galaxy lenses in the Hubble Space Telescope COSMOS survey. We also show that light from nearby bright objects can significantly affect flexion measurements. After correcting for the influence of lens light, we show that the inclusion of flexion provides tighter constraints on density profiles than does shear alone. Finally we find an average density profile consistent with an isothermal sphere.
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. We have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation of state parameter, w=-0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of sigma8=0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in 8 convergence bins in the range of -0.1 < kappa < 0.2, in multiple realizations of a single simulated 3x3 degree field, we show that the first (last) pair of models can be distinguished at the 95% (85%) confidence level. A survey with depth and area (20,000 sq. degrees), comparable to those expected from LSST, should have a factor of approx. 50 better parameter sensitivity. We find that relatively low-amplitude peaks (kappa = 0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of this sensitivity. We study a range of smoothing scales and source galaxy redshifts (z_s). With a fixed source galaxy density of 15/arcmin^2, the best results are provided by the smallest scale we can reliably simulate, 1 arcminute, and z_s=2 provides substantially better sensitivity than z_s< 1.5.
We demonstrate the possibility of detecting tidal stripping of dark matter subhalos within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups, using various models with different distributions of mass between galaxy and group halos to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 10^12--10^15 Msun.
221 - Jan M. Kratochvil 2011
In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulations to create mock WL convergence maps, and study the cosmological information content of MFs derived from these maps. Our suite consists of 80 independent 512^3 N-body runs, covering seven different cosmologies, varying three cosmological parameters Omega_m, w, and sigma_8 one at a time, around a fiducial LambdaCDM model. In each cosmology, we use ray-tracing to create a thousand pseudo-independent 12 deg^2 convergence maps, and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above three parameters. We include redshift tomography at three different source redshifts z_s=1, 1.5, 2, explore five different smoothing scales theta_G=1, 2, 3, 5, 10 arcmin, and explicitly compare and combine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The MFs are particularly well suited to break degeneracies and to constrain the dark energy equation of state parameter w (by a factor of ~ three better than from the power spectrum alone). The non-Gaussian information derives partly from the one-point function of the convergence (through V_0, the area MF), and partly through non-linear spatial information (through combining different smoothing scales for V_0, and through V_1 and V_2, the boundary length and genus MFs, respectively). In contrast to the power spectrum, the best constraints from the MFs are obtained only when multiple smoothing scales are combined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا