No Arabic abstract
We demonstrate the possibility of detecting tidal stripping of dark matter subhalos within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups, using various models with different distributions of mass between galaxy and group halos to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 10^12--10^15 Msun.
We study the ellipticity of galaxy cluster halos as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use monte-carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10,428 SDSS clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity $= 0.271 pm 0.002$ (stat) $pm 0.031$ (sys) corresponding to an axis ratio $= 0.573 pm 0.002$ (stat) $pm 0.039$ (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fit axis ratio of $0.56 pm 0.09$ (stat) $pm 0.03$ (sys), consistent with the ellipticity of the satellite distribution. Thus cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxys light distribution. From the lensing measurements we infer a misalignment angle with an RMS of ${30^circ pm 10}^circ$ when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and AGN feedback, as well as dark matter and gravity. The major improvements in signal-to-noise expected with the ongoing Dark Energy Survey and future surveys from LSST, Euclid and WFIRST will make halo shapes a useful probe of these effects.
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. We have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation of state parameter, w=-0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of sigma8=0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in 8 convergence bins in the range of -0.1 < kappa < 0.2, in multiple realizations of a single simulated 3x3 degree field, we show that the first (last) pair of models can be distinguished at the 95% (85%) confidence level. A survey with depth and area (20,000 sq. degrees), comparable to those expected from LSST, should have a factor of approx. 50 better parameter sensitivity. We find that relatively low-amplitude peaks (kappa = 0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of this sensitivity. We study a range of smoothing scales and source galaxy redshifts (z_s). With a fixed source galaxy density of 15/arcmin^2, the best results are provided by the smallest scale we can reliably simulate, 1 arcminute, and z_s=2 provides substantially better sensitivity than z_s< 1.5.
In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulations to create mock WL convergence maps, and study the cosmological information content of MFs derived from these maps. Our suite consists of 80 independent 512^3 N-body runs, covering seven different cosmologies, varying three cosmological parameters Omega_m, w, and sigma_8 one at a time, around a fiducial LambdaCDM model. In each cosmology, we use ray-tracing to create a thousand pseudo-independent 12 deg^2 convergence maps, and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above three parameters. We include redshift tomography at three different source redshifts z_s=1, 1.5, 2, explore five different smoothing scales theta_G=1, 2, 3, 5, 10 arcmin, and explicitly compare and combine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The MFs are particularly well suited to break degeneracies and to constrain the dark energy equation of state parameter w (by a factor of ~ three better than from the power spectrum alone). The non-Gaussian information derives partly from the one-point function of the convergence (through V_0, the area MF), and partly through non-linear spatial information (through combining different smoothing scales for V_0, and through V_1 and V_2, the boundary length and genus MFs, respectively). In contrast to the power spectrum, the best constraints from the MFs are obtained only when multiple smoothing scales are combined.
Weak gravitational lensing of background galaxies is a unique, direct probe of the distribution of matter in clusters of galaxies. We review several important aspects of cluster weak gravitational lensing together with recent advances in weak lensing techniques for measuring cluster lensing profiles and constraining cluster structure parameters.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.