Do you want to publish a course? Click here

Proceedings of eNTERFACE 2015 Workshop on Intelligent Interfaces

322   0   0.0 ( 0 )
 Added by Matei Mancas
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The 11th Summer Workshop on Multimodal Interfaces eNTERFACE 2015 was hosted by the Numediart Institute of Creative Technologies of the University of Mons from August 10th to September 2015. During the four weeks, students and researchers from all over the world came together in the Numediart Institute of the University of Mons to work on eight selected projects structured around intelligent interfaces. Eight projects were selected and their reports are shown here.



rate research

Read More

Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.
Proceedings of the Workshop on High Performance Energy Efficient Embedded Systems (HIP3ES) 2015. Amsterdam, January 21st. Collocated with HIPEAC 2015 Conference.
Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment are not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patients face (Mean average precision (mAP)=0.94), recognize patients face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors.
This reflection paper takes the 25th IUI conference milestone as an opportunity to analyse in detail the understanding of intelligence in the community: Despite the focus on intelligent UIs, it has remained elusive what exactly renders an interactive system or user interface intelligent, also in the fields of HCI and AI at large. We follow a bottom-up approach to analyse the emergent meaning of intelligence in the IUI community: In particular, we apply text analysis to extract all occurrences of intelligent in all IUI proceedings. We manually review these with regard to three main questions: 1) What is deemed intelligent? 2) How (else) is it characterised? and 3) What capabilities are attributed to an intelligent entity? We discuss the communitys emerging implicit perspective on characteristics of intelligence in intelligent user interfaces and conclude with ideas for stating ones own understanding of intelligence more explicitly.
This is the proceedings of the Computer Vision for Agriculture (CV4A) Workshop that was held in conjunction with the International Conference on Learning Representations (ICLR) 2020. The Computer Vision for Agriculture (CV4A) 2020 workshop was scheduled to be held in Addis Ababa, Ethiopia, on April 26th, 2020. It was held virtually that same day due to the COVID-19 pandemic. The workshop was held in conjunction with the International Conference on Learning Representations (ICLR) 2020.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا